The RPCI Biopolymer Resource is a biomolecular core Resource that provides advice and technical services to the staff in the design, synthesis, and characterization of oligonucleotides and peptides; automated DNA sequencing; and the isolation, purification and characterization of proteins. The Resource emphasizes support to staff in developing and understanding the uses and applications of the various techniques and provides convenient access to the technical services. In order to accommodate the evolving research needs and interests of RPCI staff and to support the technical r requirements of the various projects, the Resource has recently added new areas of emphasis and expertise. These include fluorescence-based, """"""""real time"""""""" PCR for quantifying gene expression; mass spectrometry for the characterization (and identification) of proteins and peptides and generical applicability to proteomics; and the synthesis of """"""""specialty"""""""" oligonucleotides such as the dual-labeled probes. for fluorogenic N5'-nuclease assays. The DNA sequencing capability of the Resource has also been recently upgraded to higher sensitivity and throughput, and is now capable of sequencing BAC and PAC clones. The Resource continues to be a heavily used core resource-in 1998, technical services were provided to over 50 senior RPCI staff, supported over 80 publications, and there was an approximately 50% increased in the services provided in the areas of oligonucleotide synthesis, DNA sequencing, mas spectroscopy and chromatography. The new technical services offered by the Resource have increased and diversified its user base, and as these techniques become fully implemented, use of the Resource is expected to further increase.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016056-26
Application #
6452243
Study Section
Project Start
2001-05-07
Project End
2003-04-30
Budget Start
Budget End
Support Year
26
Fiscal Year
2001
Total Cost
Indirect Cost
Name
Roswell Park Cancer Institute Corp
Department
Type
DUNS #
City
Buffalo
State
NY
Country
United States
Zip Code
14263
Wang, Xue; Niu, Jin; Li, Jun et al. (2018) Temporal Effects of Combined Birinapant and Paclitaxel on Pancreatic Cancer Cells Investigated via Large-Scale, Ion-Current-Based Quantitative Proteomics (IonStar). Mol Cell Proteomics 17:655-671
Burkard-Mandel, Lauren; O'Neill, Rachel; Colligan, Sean et al. (2018) Tumor-derived thymic stromal lymphopoietin enhances lung metastasis through an alveolar macrophage-dependent mechanism. Oncoimmunology 7:e1419115
Rosario, S R; Long, M D; Affronti, H C et al. (2018) Pan-cancer analysis of transcriptional metabolic dysregulation using The Cancer Genome Atlas. Nat Commun 9:5330
Tsuji, Takemasa; Yoneda, Akira; Matsuzaki, Junko et al. (2018) Rapid Construction of Antitumor T-cell Receptor Vectors from Frozen Tumors for Engineered T-cell Therapy. Cancer Immunol Res 6:594-604
Narayanan, Sumana; Kawaguchi, Tsutomu; Yan, Li et al. (2018) Cytolytic Activity Score to Assess Anticancer Immunity in Colorectal Cancer. Ann Surg Oncol 25:2323-2331
Ratajczak, Alexsandra; Feleszko, Wojciech; Smith, Danielle M et al. (2018) How close are we to definitively identifying the respiratory health effects of e-cigarettes? Expert Rev Respir Med 12:549-556
Terakawa, Tomoaki; Katsuta, Eriko; Yan, Li et al. (2018) High expression of SLCO2B1 is associated with prostate cancer recurrence after radical prostatectomy. Oncotarget 9:14207-14218
Zhu, Qianqian; Yan, Li; Liu, Qian et al. (2018) Exome chip analyses identify genes affecting mortality after HLA-matched unrelated-donor blood and marrow transplantation. Blood 131:2490-2499
Lu, Yingchang; Beeghly-Fadiel, Alicia; Wu, Lang et al. (2018) A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Res 78:5419-5430
Li, Yanchun; Opyrchal, Mateusz; Yao, Song et al. (2018) The role of programmed death ligand-1 and tumor-infiltrating lymphocytes in breast cancer overexpressing HER2 gene. Breast Cancer Res Treat 170:293-302

Showing the most recent 10 out of 1555 publications