The Microscopy Shared Resource (MSR) is a centrally-located resource with cutting-edge instruments and highly trained experts to provide outstanding support for OSUCCC scientists for confocal, light, scanning electron and transmission electron microscopy, the MSR has two electron microscopes and four confocals all purchased since 2005 through federal grants and outstanding institutional support. These instruments include two single photon Olympus FVI 000 confocal microscopes each with four lasers and high N.A. objectives specifically for fixed cells and tissue, an FEI Tecnai BioTwin transmission electron microscope, and an Olympus FVI 000 multiphoton confocal instrument with a MaiTai DeepSee laser to probe deep into tumors in both live animals and fixed tissue. The MSR is led by Dr. Richard Burry, an established and well funded scientist with over 30 years of extensive expertise in microscopy, who along with an experienced and highly-trained staff, provides OSUCCC investigators vital consultation in experimental design and image analysis. Usage and productivity from the MSR is enhanced by well-organized training courses and individual training offered by staff members. The MSR is extensively used across OSUCCC scientific programs providing service to >30 OSUCCC member labs to generate the images for high quality cancer relevant publications and grants. The MSR is centrally located on the second floor of the Biomedical Research Tower (BRT) close to the labs of the OSUCCC members. Based on the expanding capabilities of the MSR and increases in number of grant applications from OSUCCC members, the OSUCCC usage is estimated to increase dramatically over the next five years based on strategic recruitment goals and expanded demand for high-end microscopy in cancer research. The MSR is supported by outstanding institutional resources by leveraging extensive partnerships with OSU Colleges, the OSU Office of Research, grants from the State of Ohio and the OSUCCC. The MSR is a new OSUCCC shared resource, previously with a strong user base as an OSU core facility, and thus fulfills NIH goals to consolidate core facilities for maximal efficiency and utilization by NIH funded investigators. Collectively the MSR is a critical shared resource for OSUCCC investigators seeking to identify specific cells and proteins in normal tissue and in tumors to enhance our understanding of fundamental processes of cancer in developing therapeutic strategies.

Public Health Relevance

The Microscopy Shared Resource (MSR) provides timely and high quality service to support OSUCCC investigators in a convenient, central location. Instrumentation and expert technical advice and training support a variety of sophisticated approaches in cancer research including: detection of viruses with transmission electron microscopy, examination of nanostructures for drug delivery with cryo-transmission electron microscopy, live cell imaging of cells in response to different treatments, multiple beam live cell confocal, reconstruction of pre-clinical breast tumor models using multiphoton microscopes, and following movement of immune cells in tumors of living animals with multiphoton microscopy. The MSR provides a vital shared resource for cancer investigators to translate cancer biology to new treatments against cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016058-37
Application #
8567309
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
37
Fiscal Year
2013
Total Cost
$73,522
Indirect Cost
$25,310
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Ozawa, Patricia Midori Murobushi; Alkhilaiwi, Faris; Cavalli, Iglenir João et al. (2018) Extracellular vesicles from triple-negative breast cancer cells promote proliferation and drug resistance in non-tumorigenic breast cells. Breast Cancer Res Treat 172:713-723
Ngankeu, Apollinaire; Ranganathan, Parvathi; Havelange, Violaine et al. (2018) Discovery and functional implications of a miR-29b-1/miR-29a cluster polymorphism in acute myeloid leukemia. Oncotarget 9:4354-4365
Lopez, Cecilia M; Yu, Peter Y; Zhang, Xiaoli et al. (2018) MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines. PLoS One 13:e0190086
Victor, Aaron R; Weigel, Christoph; Scoville, Steven D et al. (2018) Epigenetic and Posttranscriptional Regulation of CD16 Expression during Human NK Cell Development. J Immunol 200:565-572
Lampis, Andrea; Carotenuto, Pietro; Vlachogiannis, Georgios et al. (2018) MIR21 Drives Resistance to Heat Shock Protein 90 Inhibition in Cholangiocarcinoma. Gastroenterology 154:1066-1079.e5
Le Gallo, Matthieu; Rudd, Meghan L; Urick, Mary Ellen et al. (2018) The FOXA2 transcription factor is frequently somatically mutated in uterine carcinosarcomas and carcinomas. Cancer 124:65-73
Jones, Jeffrey A; Mato, Anthony R; Wierda, William G et al. (2018) Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol 19:65-75
Baldassari, Federica; Zerbinati, Carlotta; Galasso, Marco et al. (2018) Screen for MicroRNA and Drug Interactions in Breast Cancer Cell Lines Points to miR-126 as a Modulator of CDK4/6 and PIK3CA Inhibitors. Front Genet 9:174
Yang, Xiaosong; Pan, You; Qiu, Zhaojun et al. (2018) RNF126 as a Biomarker of a Poor Prognosis in Invasive Breast Cancer and CHEK1 Inhibitor Efficacy in Breast Cancer Cells. Clin Cancer Res 24:1629-1643
Latchana, Nicholas; DiVincenzo, Mallory J; Regan, Kelly et al. (2018) Alterations in patient plasma microRNA expression profiles following resection of metastatic melanoma. J Surg Oncol 118:501-509

Showing the most recent 10 out of 2602 publications