CORE-013: PROTEOMICS SHARED RESOURCE (PSR) PROJECT SUMMARY / ABSTRACT The OSUCCC Proteomics Shared Resource (PSR) provides CCSG investigators access to advanced mass spectrometry (MS) instrumentation, ancillary instrumentation for sample preparation, and expert staff to enable proteomic research, including data analysis. Two tenured faculty experts in mass spectrometry and proteomics, Drs. Michael Freitas (MBCG) and Vicki Wysocki, serve as PSR Director and Senior Faculty Advisor, respectively. They provide scientific leadership to the PSR with expertise in cancer proteomics, protein chemistry, bioinformatics, and mass spectroscopy methods development. The PSR offers numerous proteomics services to users that fall under the categories of protein identification, characterization, and quantification. The ability to confidently identify proteins is the central role of the PSR. Examples of protein characterization analysis include: identification of post-translational modifications, alternate splice forms, de novo protein sequencing and protein-protein interaction analysis.
The Specific Aims of the PSR are to: 1) provide advanced mass spectrometry based proteomics services; 2) provide innovative proteomic data analytics and bioinformatics platforms; and, 3) provide consultations with investigators on experiment design and train users on the operation of several self-operated MS instruments within the shared resource. Over the last grant period, there have been substantial upgrades to equipment in the PSR. Early in the grant period, three mass spectrometers were acquired with the help of federally funded awards: a Bruker Maxis Q-TOF, a Bruker UltrafleXtreme MALDI TOF-TOF, and a Bruker AmaZon ion trap with electron transfer dissociation (ETD). This year, three additional mass spectrometers, two high-end instruments (a Thermo Orbitrap Fusion and a Bruker 15 T FTICR along with a Thermo Quantiva triple quadrupole for targeted (MRM) analyses) are to be installed in the PSR with funding from two NIH S10 awards and also OSUCCC and other institutional support. These state-of-the-art MS instruments will improve services offered to OSUCCC members by providing significantly higher throughput shotgun proteomics, improved post-translational modification analysis, improved isotopic fine structure analysis for metabolomics, and greater capacity and data quality. The PSR has supported 37 OSUCCC members from all five OSUCCC research programs including 1 K24, 1 N01, 8 P01s, 2 P50s, 19 R01s, 8 R21s, 2 RC2s, 1 T32, and 2 U01s. The PSR has also contributed to over 74 OSUCCC member publications during the last grant period, 11 of which were in publications with a journal impact factor >10. The future plans for the PSR involve a constant effort to develop and adopt new innovative techniques and methods for protein analysis, and to acquire state-of-the-art mass spectrometry and chromatography instrumentation. Specifically, the PSR will fully integrate the 3 recently purchased major instruments, to introduce methods for 2-dimensional and 3-dimensional chromatography, and provide proteogenomics data integration. The PSR leverages extensive institutional support, and seeks only 14.2% support from CCSG funds. The Proteomics Shared Resource is part of the Analytics Grouping.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016058-41
Application #
9221258
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2016-12-01
Budget End
2017-11-30
Support Year
41
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Siegel, Marni B; He, Xiaping; Hoadley, Katherine A et al. (2018) Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer. J Clin Invest 128:1371-1383
White, Brian S; Lanc, Irena; O'Neal, Julie et al. (2018) A multiple myeloma-specific capture sequencing platform discovers novel translocations and frequent, risk-associated point mutations in IGLL5. Blood Cancer J 8:35
Owen, Dwight; Chaft, Jamie E (2018) Immunotherapy in surgically resectable non-small cell lung cancer. J Thorac Dis 10:S404-S411
O'Brien, Susan M; Jaglowski, Samantha; Byrd, John C et al. (2018) Prognostic Factors for Complete Response to Ibrutinib in Patients With Chronic Lymphocytic Leukemia: A Pooled Analysis of 2 Clinical Trials. JAMA Oncol 4:712-716
Guo, Sijin; Piao, Xijun; Li, Hui et al. (2018) Methods for construction and characterization of simple or special multifunctional RNA nanoparticles based on the 3WJ of phi29 DNA packaging motor. Methods 143:121-133
Sadowski, Abbey R; Gardner, Heather L; Borgatti, Antonella et al. (2018) Phase II study of the oral selective inhibitor of nuclear export (SINE) KPT-335 (verdinexor) in dogs with lymphoma. BMC Vet Res 14:250
Barredo, Julio C; Hastings, Caroline; Lu, Xiamin et al. (2018) Isolated late testicular relapse of B-cell acute lymphoblastic leukemia treated with intensive systemic chemotherapy and response-based testicular radiation: A Children's Oncology Group study. Pediatr Blood Cancer 65:e26928
Kim, So-Youn; Nair, Devi M; Romero, Megan et al. (2018) Transient inhibition of p53 homologs protects ovarian function from two distinct apoptotic pathways triggered by anticancer therapies. Cell Death Differ :
Yadav, Marshleen; Song, Feifei; Huang, Jason et al. (2018) Ocimum flavone Orientin as a countermeasure for thrombocytopenia. Sci Rep 8:5075
Farquhar, Neil; Thornton, Sophie; Coupland, Sarah E et al. (2018) Patterns of BAP1 protein expression provide insights into prognostic significance and the biology of uveal melanoma. J Pathol Clin Res 4:26-38

Showing the most recent 10 out of 2602 publications