? TRANSLATIONAL THERAPEUTICS (TT) The Translational Therapeutics (TT) Program at The Ohio State University Comprehensive Cancer Center (OSUCCC), co-led by David Carbone, MD, PhD, Blake Peterson, PhD, and Elaine Mardis, PhD, unites an outstanding team of 79 basic, translational and/or clinical researchers from 18 departments within The Ohio State University (OSU) Colleges of Medicine, Pharmacy, and Veterinary Medicine and Nationwide Children?s Hospital (NCH). The goal of the TT program is to translate advances in solid tumor molecular biology and promising preclinical studies into innovative clinical trials to improve the state of the art in the diagnosis and treatment of solid tumors. Solid tumors are by far the major causes of cancer death in our catchment area (the state of Ohio), dominated by diseases of special interest in this program, including lung, breast, colorectal, head and neck, thyroid, and gynecologic cancers. As a result of existing expertise and collaborative scientific efforts, as well as focused recruitments across a spectrum of disciplines, the TT program exhibits strength in basic and translational research in lung cancer, gastrointestinal malignancies, breast cancer, sarcoma, and glioblastoma, as well as newly enhanced capabilities in drug development.
The Specific Aims of the TT program are to: 1) identify and therapeutically target alterations in solid tumor proliferation and survival signaling pathways; 2) identify tumor-host interactions and target them via small molecule and immunotherapeutic approaches; and 3) develop and improve upon approaches for determining prognosis, selecting appropriate therapies, and evaluating the response to treatment. During the current funding cycle, the TT Program successfully recruited 28 solid tumor clinicians, basic scientists, and physician-scientists. In addition, TT investigators produced 1130 peer-reviewed publications; 178 of these were published in high impact (?10) journals, 16% resulted from intra- programmatic collaborations, and 31% from inter-programmatic collaborations; 74% were multi-institutional; a total of 86% were collaborative publications. TT members collaborated on programmatic grant submissions and were awarded one NCI P01, two U01s, and two UG1s, as well as two T32 training grants. The TT Program has $9.2M in current annual direct costs from peer-reviewed grants, $6.6M (71%) of which is from the NCI. The TT Program is well-integrated with the clinical teams via participation in the multidisciplinary Disease Specific Research Groups (DSRG) and organizes Pan-Disease Investigator-Initiated Trial meetings to catalyze interactions between DSRGs. As such, there were 4,070 accruals to interventional clinical trials during the last funding cycle, of which 3,351 (82%) were therapeutic, including 1,144 (28%) investigator-initiated trials. Future directions focused on the OSUCCC research priorities and cancers relevant to our catchment area and growth in cellular and checkpoint inhibitor research (adult and pediatric), immunogenomics, tumor resistance and tumor heterogeneity and small molecule drug development.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016058-45
Application #
10089997
Study Section
Subcommittee H - Clinical Groups (NCI)
Project Start
1997-09-12
Project End
2025-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
45
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Dietrich, Sascha; Ole?, Ma?gorzata; Lu, Junyan et al. (2018) Drug-perturbation-based stratification of blood cancer. J Clin Invest 128:427-445
Chen, Zhong; Wu, Dayong; Thomas-Ahner, Jennifer M et al. (2018) Diverse AR-V7 cistromes in castration-resistant prostate cancer are governed by HoxB13. Proc Natl Acad Sci U S A 115:6810-6815
Moshiri, Farzaneh; Salvi, Alessandro; Gramantieri, Laura et al. (2018) Circulating miR-106b-3p, miR-101-3p and miR-1246 as diagnostic biomarkers of hepatocellular carcinoma. Oncotarget 9:15350-15364
Petrov, Brawnie; Aldoori, Ayat; James, Cindy et al. (2018) Bipolar disorder in youth is associated with increased levels of vitamin D-binding protein. Transl Psychiatry 8:61
Senaras, Caglar; Niazi, Muhammad Khalid Khan; Sahiner, Berkman et al. (2018) Optimized generation of high-resolution phantom images using cGAN: Application to quantification of Ki67 breast cancer images. PLoS One 13:e0196846
Kovac, Rachel L; Ballash, Gregory; Fenger, Joelle et al. (2018) Plasma cytokeratin-18 concentrations as noninvasive biomarker of early gastrointestinal toxicosis in dogs receiving toceranib. J Vet Intern Med 32:2061-2068
Locke, Landon W; Kothandaraman, Shankaran; Tweedle, Michael et al. (2018) Use of a leukocyte-targeted peptide probe as a potential tracer for imaging the tuberculosis granuloma. Tuberculosis (Edinb) 108:201-210
Neff, Robert; Rush, Craig M; Smith, Blair et al. (2018) Functional characterization of recurrent FOXA2 mutations seen in endometrial cancers. Int J Cancer 143:2955-2961
Comiskey Jr, D F; Jacob, A G; Sanford, B L et al. (2018) A novel mouse model of rhabdomyosarcoma underscores the dichotomy of MDM2-ALT1 function in vivo. Oncogene 37:95-106
Bickell, Nina A; Lin, Jenny J; Abramson, Sarah R et al. (2018) Racial Disparities in Clinically Significant Prostate Cancer Treatment: The Potential Health Information Technology Offers. J Oncol Pract 14:e23-e33

Showing the most recent 10 out of 2602 publications