? FLOW CYTOMETRY SHARED RESOURCE (FCSR) Flow cytometry services are critical for cancer research. Since flow cytometry instrumentation is expensive, and typically requires significant technical expertise, a centralized resource is essential. The mission of the FCSR is to support OSUCCC members and high-impact cancer research projects with high quality cell analysis and sorting capabilities. The FCSR also provides training and regularly host technology-based seminars or workshops to introduce new technology to OSUCCC members. The FCSR continues to strive to be a state-of- the-art cell analysis laboratory that has the following Specific Aims to: 1) provide state-of-the-art equipment and support for high-quality cancer research for OSUCCC members on a fee-for-service basis; 2) continuously work with OSUCCC members to provide substantial technical expertise and training for state-of the-art cytometry instruments to address fundamental questions in cancer research so that researchers can have 24-hour access to flow cytometry instrumentation; and 3) introduce OSUCCC members to new instrumentation, technology and methodologies being developed at the FCSR through a variety of educational outreach activities. The FCSR co- Directors are Jeffrey Chalmers, (Department of Chemical and Biomolecular Engineering), and recently appointed co-Director, Kevin Weller, Associate Director of the Pelotonia Institute of Immuno-Oncology (PIIO) and specifically to develop the Immune Monitoring and Discovery Platform, a cross-cutting shared-resource initiative that integrates shared resources for complex immuno-oncology projects. Further, Dr. Gregory Behbehani (LR) is a Faculty Advisor for the Helios mass cytometer (CyTOF) system. Over the current grant cycle, major changes to the FCSR were to align with the establishment of the PIIO, which will result in a substantial increase in the need for flow cytometry services. To address this need, new instrumentation was purchased including four new instruments including a state-of-the-art Cytek Aurora flow cytometer and a Helios mass cytometer. During this time period, the FCSR contributed to 231 publications (39 >10 impact factor), had 296 users with 34,118 hours of service (83.7% to OSUCCC members), and supported 80 NCI grants (1 K12, 1 K22, 1 K24, 6 P01s, 1 P50, 52 R01s, 1 R03, 7 R21s, 3 R35s, 1 R37, 1 T32, and 5 U01s). In the next funding cycle, the FCSR will support the increasing needs of all OSUCCC strategic priorities, including immuno-oncology, translational genomics, cancer engineering, and cancer prevention and survivorship. The user base will substantially increased requiring new staff and technologies, for example by purchasing an additional Aurora instrument, and increasing cell sorting, cell isolation, and exosome/microvesicle research. In addition, new services under development include development of further exosome characterization and isolation technology. The annual budget of the FCSR is $518,075, yet the CCSG request is $108,261. As such, the FCSR leverages extensive institutional support and seeks only 20.9% support from CCSG funds.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016058-45
Application #
10090010
Study Section
Subcommittee H - Clinical Groups (NCI)
Project Start
1997-09-12
Project End
2025-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
45
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Nabar, Gauri M; Mahajan, Kalpesh D; Calhoun, Mark A et al. (2018) Micelle-templated, poly(lactic-co-glycolic acid) nanoparticles for hydrophobic drug delivery. Int J Nanomedicine 13:351-366
Tang, Xiaowen; Yang, Lin; Li, Zheng et al. (2018) First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res 8:1083-1089
Lai, Xiulan; Stiff, Andrew; Duggan, Megan et al. (2018) Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors. Proc Natl Acad Sci U S A 115:5534-5539
Rolfo, Christian; Mack, Philip C; Scagliotti, Giorgio V et al. (2018) Liquid Biopsy for Advanced Non-Small Cell LungĀ Cancer (NSCLC): A Statement Paper from theĀ IASLC. J Thorac Oncol 13:1248-1268
Ren, Yulin; Gallucci, Judith C; Li, Xinxin et al. (2018) Crystal Structures and Human Leukemia Cell Apoptosis Inducible Activities of Parthenolide Analogues Isolated from Piptocoma rufescens. J Nat Prod 81:554-561
McDonald, J Tyson; Kritharis, Athena; Beheshti, Afshin et al. (2018) Comparative oncology DNA sequencing of canine T cell lymphoma via human hotspot panel. Oncotarget 9:22693-22702
Nguyen, Phuong; Wuthrick, Evan; Chablani, Priyanka et al. (2018) Does Delaying Surgical Resection After Neoadjuvant Chemoradiation Impact Clinical Outcomes in Locally Advanced Rectal Adenocarcinoma?: A Single-Institution Experience. Am J Clin Oncol 41:140-146
Elchuri, Sailaja V; Rajasekaran, Swetha; Miles, Wayne O (2018) RNA-Sequencing of Primary Retinoblastoma Tumors Provides New Insights and Challenges Into Tumor Development. Front Genet 9:170
Reiff, Sean D; Muhowski, Elizabeth M; Guinn, Daphne et al. (2018) Noncovalent inhibition of C481S Bruton tyrosine kinase by GDC-0853: a new treatment strategy for ibrutinib-resistant CLL. Blood 132:1039-1049
Wang, Yanqiang; He, Huiling; Liyanarachchi, Sandya et al. (2018) The role of SMAD3 in the genetic predisposition to papillary thyroid carcinoma. Genet Med 20:927-935

Showing the most recent 10 out of 2602 publications