? MICROSCOPY SHARED RESOURCE (MSR) The MSR provides timely and high-quality services to support OSUCCC investigators with access to instrument, technical advice and training support on a variety of sophisticated microscopy approaches. The MSR instrumentation is provided in a centrally-organized resource and all the equipment is available to OSUCCC membership with training. At the last review, the MSR was part of the Diagnostics Shared Resource Group, which was rated as Outstanding with minor comments about leadership and usage that have been addressed. During the current grant cycle, there was a significant investment in acquiring electron microscopy (cryogenic, transmission and scanning electron microscopes) and confocal live cell imaging, including enhanced super- resolution (SIM, STORM, TIRF) light microscopy capabilities funded through an NIH S10 equipment grant.
The Specific Aims of the MSR are to: 1) provide a means for OSUCCC research community to obtain publication quality, higher resolution images of their cancer research for use in manuscripts and grant applications; 2) provide training to investigators for independent use of the instruments following training; 3) provide education and consultation opportunities to OSUCCC researchers for improved sample preparation, imaging techniques and image analysis; and, as a Developing Aim to provide OSUCCC members access to cryo-electron microscopy (cryo-EM). For this Developing Aim, the OSCUCC contributed to the purchase of two instruments with sub- nanometer resolution of purified and cellular particles. During the five-year grant period, the MSR has supported 319 investigators (32% OSUCCC members), and provided 5,730 hours of service and 44,605 hours of instrument time (33.3% of which was to OSUCCC members). The MSR contributed to 192 publications (32 > 10 impact factor) and 8 NCI grants (2 K22s, 1 P01, 1 P50, 8 R01s, and 1 U01). The MSR will support the microscopy needs of all OSUCCC strategic priorities. Given the robust OSUCCC recruitment, demand for services and new technologies will increase and capacity will be expanded. To align with immuno-oncology needs, the MSR will be a regular member of the Immune Monitoring and Discovery Platform (IMDP), and two-photon microscopes will be updated. Separately, the MSR is developing cryo-FIB capability for CET studies, and it will develop correlative light and electron microscopy and real-time single molecule cellular imaging platforms in collaboration with the GEdSR. Last, the MSR and GSR has been awarded a new grant to provide imaging capabilities that supports cell enrichment and single cell sequencing. The MSR is supported by outstanding institutional resources obtained by leveraging extensive partnerships with the OSUCCC, OSU Colleges, the OSU Office of Research and grants from the State of Ohio, all totaling over $2M over the prior grant period. The annual budget of the MSR is $697,706, yet the CCSG request is $82,192. As such, the MSR seeks only 11.8% budgetary support from CCSG funds.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016058-45
Application #
10090014
Study Section
Subcommittee H - Clinical Groups (NCI)
Project Start
1997-09-12
Project End
2025-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
45
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Talbert, Erin E; Lewis, Heather L; Farren, Matthew R et al. (2018) Circulating monocyte chemoattractant protein-1 (MCP-1) is associated with cachexia in treatment-naïve pancreatic cancer patients. J Cachexia Sarcopenia Muscle 9:358-368
Wang, Jin-Ting; Xie, Wen-Quan; Liu, Fa-Quan et al. (2018) NADH protect against radiation enteritis by enhancing autophagy and inhibiting inflammation through PI3K/AKT pathway. Am J Transl Res 10:1713-1721
Karpurapu, Manjula; Lee, Yong Gyu; Qian, Ziqing et al. (2018) Inhibition of nuclear factor of activated T cells (NFAT) c3 activation attenuates acute lung injury and pulmonary edema in murine models of sepsis. Oncotarget 9:10606-10620
Norquist, Barbara M; Brady, Mark F; Harrell, Maria I et al. (2018) Mutations in Homologous Recombination Genes and Outcomes in Ovarian Carcinoma Patients in GOG 218: An NRG Oncology/Gynecologic Oncology Group Study. Clin Cancer Res 24:777-783
Zhang, Bin; Nguyen, Le Xuan Truong; Li, Ling et al. (2018) Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nat Med 24:450-462
Tasselli, Giorgia; Filippucci, Sara; Borsella, Elisabetta et al. (2018) Yeast lipids from cardoon stalks, stranded driftwood and olive tree pruning residues as possible extra sources of oils for producing biofuels and biochemicals. Biotechnol Biofuels 11:147
Moliva, J I; Hossfeld, A P; Canan, C H et al. (2018) Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8+ T-cell-dependent manner. Mucosal Immunol 11:968-978
Suarez-Kelly, Lorena P; Akagi, Keiko; Reeser, Julie W et al. (2018) Metaplastic breast cancer in a patient with neurofibromatosis type 1 and somatic loss of heterozygosity. Cold Spring Harb Mol Case Stud 4:
Malpeli, Giorgio; Barbi, Stefano; Greco, Corinna et al. (2018) MicroRNA signatures and Foxp3+ cell count correlate with relapse occurrence in follicular lymphoma. Oncotarget 9:19961-19979
McRee, Annie-Laurie; Shoben, Abigail; Bauermeister, Jose A et al. (2018) Outsmart HPV: Acceptability and short-term effects of a web-based HPV vaccination intervention for young adult gay and bisexual men. Vaccine 36:8158-8164

Showing the most recent 10 out of 2602 publications