The goal of the new Structural Biology Core is to provide Lineberger Comprehensive Cancer Center (LCCC) members with access to and training in the state-of-the-art methodologies of structural biology and molecular modeling. Services include high-throughput automated protein and nucleic acid crystallization, x-ray diffraction data collection, crystal structural determination and analysis, solution structure determination by multidimensional nuclear magnetic resonance (NMR) methods, and sequence-informed molecular modeling and molecular dynamics. The Core is led by structural biologist Matthew R. Redinbo, Ph.D., (Molecular Therapeutics) and UNC LCCC member, with individual facilities managed by Ph.D.-level scientists with over 40 collective years of research experience. This new Core adds value to the Center by making available to non-structural biologists the complex methodologies of crystallography, NMR and molecular modeling, with the goal of adding the tools of structural biology to the repertoire used by LCCC researchers across disciplines. Highlights of recent research supported by the Core include: elucidation of the detailed molecular mechanism of Rho GTPase activation by Dbl-family GEFs, and unraveling the structural basis of drug interactions caused by activation of PXR, the primary xenobiotic sensor in humans. Future plans for the Core include additional structural biology capabilities, and increased use by a campus-wide initiative in drug discovery designed to identify drug targets and generate initial clinical candidates.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016086-31
Application #
7310758
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2005-12-01
Budget End
2006-11-30
Support Year
31
Fiscal Year
2006
Total Cost
$81,940
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Zhang, Yugen; Dittmer, Dirk P; Mieczkowski, Piotr A et al. (2018) RIG-I Detects Kaposi's Sarcoma-Associated Herpesvirus Transcripts in a RNA Polymerase III-Independent Manner. MBio 9:
Abida, Wassim; Sawyers, Charles L (2018) Targeting DNA Repair in Prostate Cancer. J Clin Oncol 36:1017-1019
Bigi, Rachele; Landis, Justin T; An, Hyowon et al. (2018) Epstein-Barr virus enhances genome maintenance of Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 115:E11379-E11387
Liu, Jianfang; Lichtenberg, Tara; Hoadley, Katherine A et al. (2018) An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell 173:400-416.e11
Song, Lixin; Dunlap, Kaitlyn L; Tan, Xianming et al. (2018) Enhancing Survivorship Care Planning for Patients With Localized Prostate Cancer Using a Couple-Focused mHealth Symptom Self-Management Program: Protocol for a Feasibility Study. JMIR Res Protoc 7:e51
Guseman, Alex J; Perez Goncalves, Gerardo M; Speer, Shannon L et al. (2018) Protein shape modulates crowding effects. Proc Natl Acad Sci U S A 115:10965-10970
Xu, Bowen; Cai, Ling; Butler, Jason M et al. (2018) The Chromatin Remodeler BPTF Activates a Stemness Gene-Expression Program Essential for the Maintenance of Adult Hematopoietic Stem Cells. Stem Cell Reports 10:675-683
Gartlan, Kate H; Bommiasamy, Hemamalini; Paz, Katelyn et al. (2018) A critical role for donor-derived IL-22 in cutaneous chronic GVHD. Am J Transplant 18:810-820
Lee, Andrew L; Sapienza, Paul J (2018) Thermodynamic and NMR Assessment of Ligand Cooperativity and Intersubunit Communication in Symmetric Dimers: Application to Thymidylate Synthase. Front Mol Biosci 5:47
Parada Jr, Humberto; Hall, Marissa G; Boynton, Marcella H et al. (2018) Trajectories of Responses to Pictorial Cigarette Pack Warnings. Nicotine Tob Res 20:876-881

Showing the most recent 10 out of 1525 publications