Proteomics Core Facility The Proteomics Core strives to provide outstanding mass spectrometry-based service and training to Cancer Center researchers. The core provides state-of-the-art analysis for protein identification from mixtures of proteins; defining post-translational modifications (i.e. phosphorylation, acetylation, ubiquitination); and quantitative analysis of changes in protein expression or modification using methods such as SILAC and ITRAQ, The core works with investigators to ensure use of the best proteomic applications for design of experimental protocols needed to answer important cancer biology-related questions and provides a unique training environment for students and fellows. Highlights of proteomic research supported by the core include papers In Cell (Salmon), Nature (Zhang), PNAS (Whang) and Molecular and Cellular Biology (Burridge, Marzluff, Patterson). The core is led by three Ph.D. scientists with extensive proteomics experience: Drs. Lee Graves (Faculty Director), Maria Hines (Facility Director) and Xian Chen (Technology Development Director). Core usage has steadily increased and reflects the fundamental need to understand proteome dynamics at an ever increasing level of sophistication. The Institution and Cancer Center has provided more than $2.5 million dollars in the past five years for new mass spectrometry and nano-LC instrumentation. The core continues to increase its capacity to perform high-throughput large scale, quantitative proteomics. To accomplish these objectives, CCSG support of $144,563 is proposed, which is approximately 30% of the projected Proteomics Core operating costs for 2010. In 2009, the core was used by 46 cancer center members (100% peer-reviewed), accounting for 86% of total core usage. The proposed budget will partially support salaries of six core personnel and sen/ice contracts for mass spectrometers. This is an approximate 19% increase in CCSG support that is needed for the expansion of large scale high-throughput, quantitative proteomics. Future plans involve expanding the mass spectrometry-based infrastructure with an additional LTQ Orbitrap for support of state-of-the-art quantitative proteomics.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016086-39
Application #
8786521
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-12-01
Budget End
2015-11-30
Support Year
39
Fiscal Year
2015
Total Cost
$225,496
Indirect Cost
$73,405
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Zhang, Yugen; Dittmer, Dirk P; Mieczkowski, Piotr A et al. (2018) RIG-I Detects Kaposi's Sarcoma-Associated Herpesvirus Transcripts in a RNA Polymerase III-Independent Manner. MBio 9:
Abida, Wassim; Sawyers, Charles L (2018) Targeting DNA Repair in Prostate Cancer. J Clin Oncol 36:1017-1019
Bigi, Rachele; Landis, Justin T; An, Hyowon et al. (2018) Epstein-Barr virus enhances genome maintenance of Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 115:E11379-E11387
Liu, Jianfang; Lichtenberg, Tara; Hoadley, Katherine A et al. (2018) An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell 173:400-416.e11
Song, Lixin; Dunlap, Kaitlyn L; Tan, Xianming et al. (2018) Enhancing Survivorship Care Planning for Patients With Localized Prostate Cancer Using a Couple-Focused mHealth Symptom Self-Management Program: Protocol for a Feasibility Study. JMIR Res Protoc 7:e51
Guseman, Alex J; Perez Goncalves, Gerardo M; Speer, Shannon L et al. (2018) Protein shape modulates crowding effects. Proc Natl Acad Sci U S A 115:10965-10970
Xu, Bowen; Cai, Ling; Butler, Jason M et al. (2018) The Chromatin Remodeler BPTF Activates a Stemness Gene-Expression Program Essential for the Maintenance of Adult Hematopoietic Stem Cells. Stem Cell Reports 10:675-683
Gartlan, Kate H; Bommiasamy, Hemamalini; Paz, Katelyn et al. (2018) A critical role for donor-derived IL-22 in cutaneous chronic GVHD. Am J Transplant 18:810-820
Lee, Andrew L; Sapienza, Paul J (2018) Thermodynamic and NMR Assessment of Ligand Cooperativity and Intersubunit Communication in Symmetric Dimers: Application to Thymidylate Synthase. Front Mol Biosci 5:47
Parada Jr, Humberto; Hall, Marissa G; Boynton, Marcella H et al. (2018) Trajectories of Responses to Pictorial Cigarette Pack Warnings. Nicotine Tob Res 20:876-881

Showing the most recent 10 out of 1525 publications