SEQUENCING AND GENOMICS SHARED RESOURCE Sequencing and Genomics (SEQ) provides an integrated platform of technology, expertise, education, and infrastructure to create an accessible environment for LCCC researchers to undertake cutting-edge genomics projects. The Core specializes in six major technologies: Next Generation short-read sequencing (Illumina), long-read sequencing and genomic mapping (Oxford Nanopore Technologies, BioNano Inc.), NanoString digital RNA quantification, Affymetrix microarrays, Illumina bead array genotyping, and RNAi screening for functional validation. Through reciprocity with North Carolina State University, the SR also has access to the Pacific Biosciences Sequel system. These are complemented by LCCC investments in computational infrastructure and analysis. Over the past five years, LCCC has integrated two new units in partnership with TPF and CPDM to compliment SEQ, specifically to facilitate translational cancer genomics to seamlessly support the coordination, project management, and tracking necessary to perform genomics studies on patient samples from protocol-driven trials. In addition the Translational Genomics Laboratory (TGL) focuses solely on cancer sample preparation for downstream sequencing, NanoString analysis, or other molecular testing. This laboratory uses automated instrumentation and stable protocols optimized for limited input and degraded cancer specimens collected from clinical trials and translational studies. TGL initiates a pathway for clinical genomics projects through SEQ and subsequent analysis by the bioinformatics SR (BIOIN). SEQ SR requests $195,591, 3% of the total fiscal year 2019 budget. LCCC faculty were 43% of fiscal year 2020 users. During the past five years SEQ supported the LCCC investigators involved in TCGA. This project oversaw the molecular characterization of over 20,000 primary tumor and matched normal samples across 33 cancer types. Within the next year, SEQ will acquire an ONT PromethION 24 system, which uses a high- capacity, long-read sequencing technology capable of high production whole genome sequencing and transcriptomics. This technology allows for efficient resequencing of whole genomes including repetitive elements, structural variation, and other problematic regions of the genome. ONT sequencing provides reproducible detection of small, medium, and large size structural variations, and in the near future the detection of 5mC.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016086-45
Application #
10089833
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1997-06-01
Project End
2025-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
45
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Schulfer, Anjelique F; Battaglia, Thomas; Alvarez, Yelina et al. (2018) Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat Microbiol 3:234-242
Hall, Marissa G; Mendel, Jennifer R; Noar, Seth M et al. (2018) Why smokers avoid cigarette pack risk messages: Two randomized clinical trials in the United States. Soc Sci Med 213:165-172
Cholon, Deborah M; Gentzsch, Martina (2018) Recent progress in translational cystic fibrosis research using precision medicine strategies. J Cyst Fibros 17:S52-S60
Tappata, Manaswita; Eluri, Swathi; Perjar, Irina et al. (2018) Association of mast cells with clinical, endoscopic, and histologic findings in adults with eosinophilic esophagitis. Allergy 73:2088-2092
Che, Tao; Majumdar, Susruta; Zaidi, Saheem A et al. (2018) Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor. Cell 172:55-67.e15
Hu, Peirong; Bi, Yanmin; Ma, Hong et al. (2018) Superior lentiviral vectors designed for BSL-0 environment abolish vector mobilization. Gene Ther 25:454-472
Townsley, Loni; Yannarell, Sarah M; Huynh, Tuanh Ngoc et al. (2018) Cyclic di-AMP Acts as an Extracellular Signal That Impacts Bacillus subtilis Biofilm Formation and Plant Attachment. MBio 9:
DeBono, Nathan L; Robinson, Whitney R; Lund, Jennifer L et al. (2018) Race, Menopausal Hormone Therapy, and Invasive Breast Cancer in the Carolina Breast Cancer Study. J Womens Health (Larchmt) 27:377-386
Okolie, Onyinyechukwu; Irvin, David M; Bago, Juli R et al. (2018) Intra-cavity stem cell therapy inhibits tumor progression in a novel murine model of medulloblastoma surgical resection. PLoS One 13:e0198596
van Haren, Jeffrey; Charafeddine, Rabab A; Ettinger, Andreas et al. (2018) Local control of intracellular microtubule dynamics by EB1 photodissociation. Nat Cell Biol 20:252-261

Showing the most recent 10 out of 1525 publications