The Melanoma Program was created in 2002 and is comprised of 19 investigators, representing 11 departments of the New York University School of Medicine. Its core mission is to utilize the cohesive and unique interdisciplinary nature of its members to: 1) identify risk factors and prognostic markers of melanoma progression;2) evaluate the biologic heterogeneity of melanoma, including expression, furiction and molecular alterations of growth control pathways, oncogenes and antigens;and 3) integrate immunotherapeutic, chemotherapeutic and biological therapies into combination approaches for treating melanoma. The Program has three areas of unique strength which underlie these aims: a large clinical patient base, a translational research program that drives active research within the Program and prospectively accrues melanoma patients'blood, tissue specimens, and clinical information, and an immunotherapy program that tests novel cell-based approaches in combination with established or innovative therapies to treat melanoma patients. These common scientific interests and goals serve to foster vigorous interactions and collaborations between members of the Melanoma Program. Although this is a relatively young program, its members have produced over 100 melanoma-related publications, and intraprogrammatic collaborations and publications represent an increasing component every year. Total funding for this program is $2,444,482. Total publications for the past five years include 156 of which 6% are intra-programmatic and 26% are inter-programmatic.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016087-29
Application #
7843316
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2009-03-01
Budget End
2010-02-28
Support Year
29
Fiscal Year
2009
Total Cost
$25,400
Indirect Cost
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Xu, Yang; Taylor, Paul; Andrade, Joshua et al. (2018) Pathologic Oxidation of PTPN12 Underlies ABL1 Phosphorylation in Hereditary Leiomyomatosis and Renal Cell Carcinoma. Cancer Res 78:6539-6548
Gagner, Jean-Pierre; Zagzag, David (2018) Probing Glioblastoma Tissue Heterogeneity with Laser Capture Microdissection. Methods Mol Biol 1741:209-220
Tsay, Jun-Chieh J; Wu, Benjamin G; Badri, Michelle H et al. (2018) Airway Microbiota Is Associated with Upregulation of the PI3K Pathway in Lung Cancer. Am J Respir Crit Care Med 198:1188-1198
Martin, Patricia K; Marchiando, Amanda; Xu, Ruliang et al. (2018) Autophagy proteins suppress protective type I interferon signalling in response to the murine gut microbiota. Nat Microbiol 3:1131-1141
de la Parra, Columba; Ernlund, Amanda; Alard, Amandine et al. (2018) A widespread alternate form of cap-dependent mRNA translation initiation. Nat Commun 9:3068
Coux, Rémi-Xavier; Teixeira, Felipe Karam; Lehmann, Ruth (2018) L(3)mbt and the LINT complex safeguard cellular identity in the Drosophila ovary. Development 145:
Patibandla, Jay R; Fehniger, Julia E; Levine, Douglas A et al. (2018) Small cell cancers of the female genital tract: Molecular and clinical aspects. Gynecol Oncol 149:420-427
Fanok, Melania H; Sun, Amy; Fogli, Laura K et al. (2018) Role of Dysregulated Cytokine Signaling and Bacterial Triggers in the Pathogenesis of Cutaneous T-Cell Lymphoma. J Invest Dermatol 138:1116-1125
Harper, Lamia; Balasubramanian, Divya; Ohneck, Elizabeth A et al. (2018) Staphylococcus aureus Responds to the Central Metabolite Pyruvate To Regulate Virulence. MBio 9:
Berger, Ashton C; Korkut, Anil; Kanchi, Rupa S et al. (2018) A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell 33:690-705.e9

Showing the most recent 10 out of 1170 publications