The program in Environmental and Molecular Carcinogenesis integrates investigators from several different departments on 4 distinct NYU campuses: Sterling Forest (14), the School of Medicine (24), Dental School (3) and Washington Square (2) sharing a common interest in understanding the Environmental causes of cancer. The overall goal of the program is to understand the environmental etiology of cancer and to use this information for cancer prevention and early detection. This research program focuses on: (1)The mechanisms of action by environmental carcinogens by investigating their effects on the structure and function of cellular macromolecules. Macromolecules of interest include DNA and proteins, particularly those involved with signaling, transcription control, and susceptibility to environmental agents. These studies are carried out in humans, as well as in vivo and in vitro models. (2) Inorganic compounds, such as arsenic, nickel, chromium, and iron. The molecular toxicological effects of metals and other agents are studied by examining their interactions with DNA and with proteins, which have structural, regulatory or enzymatic activities. (3) The formation of reactive oxygen species, their biochemistry, and the biological effects that might result from their actions. (4) The mutational specificity of carcinogens and site-specific mutagenesis of particular DNA lesions, the molecular basis for genetic susceptibility to environmental agents, the effects of hormones on gene expression and carcinogenesis, and chemoprevention. (5) Epigenetic mechanisms of carcinogenesis. (6) Antioxidants and the prevention of tumor formation as well as developing biomarkers for early detection of cancer. (7) Epidemiology and molecular epidemiology approaches to cancer etiology. Research in this program is divided thematically into five groups: 1) DNA adducts, DNA Damage and Repair; 2) Carcinogenesis and Animal Models;3) Chemoprevention;4) Cell Signaling and Epigenetic Mechanisms of Carcinogenesis;and 5) Early Detection and Cancer Epidemiology.Dr Costa is the Director of the Program. ? Total funding increased from $7,668,974 to $22,551,198. Membership has increased from 21 to 47. Total publications include 627 of which 12% are intra-programmatic and 8% are inter-programmatie.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016087-30
Application #
8038235
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
30
Fiscal Year
2010
Total Cost
$24,559
Indirect Cost
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Chen, Danqi; Fang, Lei; Mei, Shenglin et al. (2018) Erratum: ""Regulation of Chromatin Assembly and Cell Transformation by Formaldehyde Exposure in Human Cells"". Environ Health Perspect 126:019001
Fan, Xiaozhou; Peters, Brandilyn A; Jacobs, Eric J et al. (2018) Drinking alcohol is associated with variation in the human oral microbiome in a large study of American adults. Microbiome 6:59
Wadghiri, Youssef Z; Hoang, Dung Minh; Leporati, Anita et al. (2018) High-resolution Imaging of Myeloperoxidase Activity Sensors in Human Cerebrovascular Disease. Sci Rep 8:7687
Khodadadi-Jamayran, Alireza; Akgol-Oksuz, Betul; Afanasyeva, Yelena et al. (2018) Prognostic role of elevated mir-24-3p in breast cancer and its association with the metastatic process. Oncotarget 9:12868-12878
Nancy, Patrice; Siewiera, Johan; Rizzuto, Gabrielle et al. (2018) H3K27me3 dynamics dictate evolving uterine states in pregnancy and parturition. J Clin Invest 128:233-247
Wang, Shiyang; Liechty, Benjamin; Patel, Seema et al. (2018) Programmed death ligand 1 expression and tumor infiltrating lymphocytes in neurofibromatosis type 1 and 2 associated tumors. J Neurooncol 138:183-190
Ge, Wenzhen; Clendenen, Tess V; Afanasyeva, Yelena et al. (2018) Circulating anti-Müllerian hormone and breast cancer risk: A study in ten prospective cohorts. Int J Cancer 142:2215-2226
Schulfer, Anjelique F; Battaglia, Thomas; Alvarez, Yelina et al. (2018) Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat Microbiol 3:234-242
Winer, Benjamin Y; Shirvani-Dastgerdi, Elham; Bram, Yaron et al. (2018) Preclinical assessment of antiviral combination therapy in a genetically humanized mouse model for hepatitis delta virus infection. Sci Transl Med 10:
Ruggles, Kelly V; Wang, Jincheng; Volkova, Angelina et al. (2018) Changes in the Gut Microbiota of Urban Subjects during an Immersion in the Traditional Diet and Lifestyle of a Rainforest Village. mSphere 3:

Showing the most recent 10 out of 1170 publications