The Cancer Immunology Program is composed of 34 investigators (29 Full and 5 Associate members) from 13 Departments. The overall goal of the Program is to understand how immune cells work in physiological and pathological conditions, in order to develop new strategies to harness the power of the immune system to fight cancer, and to understand how unique aspects of lymphocyte biology contribute to oncogenesis.
The specific aims are: 1) To discover mechanisms that lead to malignancies of the immune system and develop targeted therapies that exploit the urtique biology of immune cell malignancies;2) To study the basic mechanisms regulating immune responses and their alteration in tumor-bearing hosts, including aspects of antigen presentation, signaling, effector programs and tolerance;and 3) To develop new immunotherapies for the treatment of cancer and test them in pre-clinical and clinical studies. To achieve these goals, the Program promotes forums for interactions between laboratory scientists and clinicians who share a common interest in Cancer Immunology;provides access to sophisticated technologies that are beyond the reach of individual laboratories;and supports members, particularly junior investigators, with seed money for pilot projects for translational applications in cancer immunology. Drs. Sandra Demaria and Michael Dustin are the Co-Leaders for this Program. Total funding increased from $12,703,949 to $15,514,219 since the last competitive application. Membership has decreased from 38 to 34. Publications for the period total 333, of which 7.5% are intra-programmatic, 20.1% are inter-programmatic, and 5.4% are both intra- and inter-programmatic collaborations

Public Health Relevance

Improved understanding of the intricate functioning of the immune system is essential for achieving progress in cancer treatment. This program provides the vehicle for cooperation between investigators with multidisciplinary expertise that is essential for the development of innovative therapeutic strategies exploiting the power of the immune system.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016087-33
Application #
8436427
Study Section
Subcommittee G - Education (NCI)
Project Start
2013-03-01
Project End
2018-02-28
Budget Start
2013-04-01
Budget End
2014-02-28
Support Year
33
Fiscal Year
2013
Total Cost
$19,456
Indirect Cost
$7,978
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Evensen, Nikki A; Madhusoodhan, P Pallavi; Meyer, Julia et al. (2018) MSH6 haploinsufficiency at relapse contributes to the development of thiopurine resistance in pediatric B-lymphoblastic leukemia. Haematologica 103:830-839
Lee, Hyun-Wook; Park, Sung-Hyun; Weng, Mao-Wen et al. (2018) E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells. Proc Natl Acad Sci U S A 115:E1560-E1569
Sun, Qi; Rabbani, Piul; Takeo, Makoto et al. (2018) Dissecting Wnt Signaling for Melanocyte Regulation during Wound Healing. J Invest Dermatol 138:1591-1600
Formenti, Silvia C; Rudqvist, Nils-Petter; Golden, Encouse et al. (2018) Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat Med 24:1845-1851
Xu, Yang; Taylor, Paul; Andrade, Joshua et al. (2018) Pathologic Oxidation of PTPN12 Underlies ABL1 Phosphorylation in Hereditary Leiomyomatosis and Renal Cell Carcinoma. Cancer Res 78:6539-6548
Gagner, Jean-Pierre; Zagzag, David (2018) Probing Glioblastoma Tissue Heterogeneity with Laser Capture Microdissection. Methods Mol Biol 1741:209-220
Tsay, Jun-Chieh J; Wu, Benjamin G; Badri, Michelle H et al. (2018) Airway Microbiota Is Associated with Upregulation of the PI3K Pathway in Lung Cancer. Am J Respir Crit Care Med 198:1188-1198
Martin, Patricia K; Marchiando, Amanda; Xu, Ruliang et al. (2018) Autophagy proteins suppress protective type I interferon signalling in response to the murine gut microbiota. Nat Microbiol 3:1131-1141
de la Parra, Columba; Ernlund, Amanda; Alard, Amandine et al. (2018) A widespread alternate form of cap-dependent mRNA translation initiation. Nat Commun 9:3068
Coux, RĂ©mi-Xavier; Teixeira, Felipe Karam; Lehmann, Ruth (2018) L(3)mbt and the LINT complex safeguard cellular identity in the Drosophila ovary. Development 145:

Showing the most recent 10 out of 1170 publications