;The Epidemiology &Cancer Control Program is composed of 34 investigators (30 Full and 4 Associate members) from 12 Departments. The overall mission of the Program is to reduce the risk of cancer occurrence and death and to enhance the quality of life of cancer survivors. To fulfill this mission, it has 4 major scientific objectives: 1) To identify environmental and genetic determinants of cancer to improve means of cancer prevention, focusing specifically on understanding the role of environmental factors in cancer etiology, determining the metabolic and reproductive factors in cancer etiology, understanding the role of human genetics in cancer etiology and progression, and identifying cancer risks associated with the human microbiome;2) To reduce cancer burden by risk factor modification, with a specific focus on obesity control and tobacco use reduction;3) To reduce cancer burden by early detection of cancer, with a specific focus on the application of methods to increase screening participation by underserved populations and the development of novel early detection biomarkers;and 4) To address cancer-related burden in patients and survivors, with a particular emphasis on meeting the needs of the underserved. The research focus areas are interdisciplinary, including population, laboratory and clinical scientists from ECC and other NYU Cancer Institute Research Programs. Drs. Richard Hayes and Brian Schmidt are the Co-Leaders for this Program. This is a new Program that currently has $16,940,943 on funding. Publications for the period total 216, of which 17.6% are intra-programmatic, 11.1% are inter-programmatic, and 8.8% are both intra- and interprogrammatic collaborations.

Public Health Relevance

The Epidemiology and Cancer Control Program undertakes epidemiological research on cancer and evaluates cancer prevention and outreach efforts, thus contributing to the evidence-base for effective cancer burden reduction programs in the diverse New York regional population and more broadly. PROJECT SUMMARY (See instructions): The Breast Cancer Program is composed of 38 investigators (32 Full and 6 Associate members) from 17 Departments. The Program aims to integrate so do-cultural disparities and population-based research with laboratory-based basic, translational and clinical research programs that can change the state of breast cancer mortality through a synergistic understanding of breast cancer and innovative approaches in treatment. To do so, they have developed the following Specific Aims: 1) Understand the so do-cultural and economic factors that impede diagnosis and care and contribute to disparities in treatment and survival;2) Understand the immunological, micro-environmental, genetic and molecular mechanisms that contribute to the development, invasion, recurrence and metastasis of breast cancer;3) Translate scientific findings to breast cancer development and progression into innovative therapeutics and therapeutic approaches to benefit patients by improving diagnosis and treatment;and 4) Advance the development of clinicians and research scientists working collaboratively to establish novel basic, translational and clinical research areas. To address these aims, six major areas are being developed: 1) Hormonal signaling;2) Invasiveness, metastasis and angiogenesis;3) Immunity/immunological intervention and association with breast cancer;4) Epidemiology;5) Radiobiology and physics research in breast cancer;and 6) Socio-cultural and community based research and programs. Drs. Silvia Formenti and Robert Schneider are the Co-Leaders for this Program. Total funding increased from $9,789,777 to $11,595,777 since the last competitive application. Membership has decreased from 44 to 38. Publications for the period total 275, of which 16.7% are intraprogrammatic, 16% are inter-programmatic, and 8.7% are both intra- and inter-programmatic collaborations.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016087-33
Application #
8436433
Study Section
Subcommittee G - Education (NCI)
Project Start
2013-03-01
Project End
2018-02-28
Budget Start
2013-04-01
Budget End
2014-02-28
Support Year
33
Fiscal Year
2013
Total Cost
$23,356
Indirect Cost
$9,577
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Saint Fleur-Lominy, Shella; Maus, Mate; Vaeth, Martin et al. (2018) STIM1 and STIM2 Mediate Cancer-Induced Inflammation in T Cell Acute Lymphoblastic Leukemia. Cell Rep 24:3045-3060.e5
Puranik, Amrutesh S; Leaf, Irina A; Jensen, Mark A et al. (2018) Kidney-resident macrophages promote a proangiogenic environment in the normal and chronically ischemic mouse kidney. Sci Rep 8:13948
Cui, Xin; Morales, Renee-Tyler Tan; Qian, Weiyi et al. (2018) Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis. Biomaterials 161:164-178
Weng, Mao-Wen; Lee, Hyun-Wook; Park, Sung-Hyun et al. (2018) Aldehydes are the predominant forces inducing DNA damage and inhibiting DNA repair in tobacco smoke carcinogenesis. Proc Natl Acad Sci U S A 115:E6152-E6161
Burgess, Hannah M; Pourchet, Aldo; Hajdu, Cristina H et al. (2018) Targeting Poxvirus Decapping Enzymes and mRNA Decay to Generate an Effective Oncolytic Virus. Mol Ther Oncolytics 8:71-81
Wong, Serre-Yu; Coffre, Maryaline; Ramanan, Deepshika et al. (2018) B Cell Defects Observed in Nod2 Knockout Mice Are a Consequence of a Dock2 Mutation Frequently Found in Inbred Strains. J Immunol 201:1442-1451
Handler, Jesse; Cullis, Jane; Avanzi, Antonina et al. (2018) Pre-neoplastic pancreas cells enter a partially mesenchymal state following transient TGF-? exposure. Oncogene 37:4334-4342
Diamond, Julie M; Vanpouille-Box, Claire; Spada, Sheila et al. (2018) Exosomes Shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from Irradiated Cancer Cells to DCs. Cancer Immunol Res 6:910-920
Fan, Xiaozhou; Peters, Brandilyn A; Jacobs, Eric J et al. (2018) Drinking alcohol is associated with variation in the human oral microbiome in a large study of American adults. Microbiome 6:59
Chen, Danqi; Fang, Lei; Mei, Shenglin et al. (2018) Erratum: ""Regulation of Chromatin Assembly and Cell Transformation by Formaldehyde Exposure in Human Cells"". Environ Health Perspect 126:019001

Showing the most recent 10 out of 1170 publications