The goals of the Radiation Biology &Imaging (RBI) Program remain unchanged since the last review of the ACC Core Grant. The RBI program seeks to improve the outcome of patients through the advanced understanding of how ionizing and non-ionizing radiation interacts with cancer and normal tissues. Through the RBI Program, investigators from diverse backgrounds and multiple Departments within the School of Medicine, Veterinary School and the School of Engineering, are brought together to identify the molecular and physiological determinants of radiation and PDT response in tumors. New areas of focus developed in the last two years include the use of nanomaterials to deliver therapeutic and imaging agents to tumors and the use of sophisticated imaging and radiation delivery approaches to better define and evaluate targets and treat tumors with the lowest possible damage to normal tissues. These new efforts have been strengthened with a substantial recruitment effort of new members into the RBI program. The programmatic goals are: 1. to understand the basic molecular mechanisms underlying the cellular response to radiation and to develop molecular targets for manipulating the response of tumors to drugs and ionizing radiation; 2. to develop clinical trials for photodynamic therapy and understand the underlying molecular and physiologic mechanisms that underlie its use; 3. to develop mechanisms to test and validate invasive and non-invasive methods for measuring tumor oxygenation and metabolic status; 4. to study the molecular events in the response to DNA damage by ionizing radiation;and 5. to develop imaging techniques that are related to the delivery and underlying mechanisms of radiation.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016520-37
Application #
8567186
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
37
Fiscal Year
2013
Total Cost
$124,028
Indirect Cost
$90,210
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Crisalli, Lisa M; Hinkle, Joanne T; Walling, Christopher C et al. (2018) Higher Donor Apheresis Blood Volumes Are Associated with Reduced Relapse Risk and Improved Survival in Reduced-Intensity Allogeneic Transplantations with Unrelated Donors. Biol Blood Marrow Transplant 24:1203-1208
Mazaleuskaya, Liudmila L; Salamatipour, Ashkan; Sarantopoulou, Dimitra et al. (2018) Analysis of HETEs in human whole blood by chiral UHPLC-ECAPCI/HRMS. J Lipid Res 59:564-575
Facompre, Nicole D; Harmeyer, Kayla M; Sahu, Varun et al. (2018) Targeting JARID1B's demethylase activity blocks a subset of its functions in oral cancer. Oncotarget 9:8985-8998
Rosenfeld, Aaron M; Meng, Wenzhao; Chen, Dora Y et al. (2018) Computational Evaluation of B-Cell Clone Sizes in Bulk Populations. Front Immunol 9:1472
Shroff, Rachna T; Hendifar, Andrew; McWilliams, Robert R et al. (2018) Rucaparib Monotherapy in Patients With Pancreatic Cancer and a Known Deleterious BRCA Mutation. JCO Precis Oncol 2018:
Fraietta, Joseph A; Lacey, Simon F; Orlando, Elena J et al. (2018) Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 24:563-571
Anton, Lauren; Sierra, Luz-Jeannette; DeVine, Ann et al. (2018) Common Cervicovaginal Microbial Supernatants Alter Cervical Epithelial Function: Mechanisms by Which Lactobacillus crispatus Contributes to Cervical Health. Front Microbiol 9:2181
Williams, Austin D; Reyes, Sylvia A; Arlow, Renee L et al. (2018) Is Age Trumping Genetic Profiling in Clinical Practice? Relationship of Chemotherapy Recommendation and Oncotype DX Recurrence Score in Patients Aged Ann Surg Oncol 25:2875-2883
Krump, Nathan A; Liu, Wei; You, Jianxin (2018) Mechanisms of persistence by small DNA tumor viruses. Curr Opin Virol 32:71-79
Bengsch, Bertram; Ohtani, Takuya; Khan, Omar et al. (2018) Epigenomic-Guided Mass Cytometry Profiling Reveals Disease-Specific Features of Exhausted CD8 T Cells. Immunity 48:1029-1045.e5

Showing the most recent 10 out of 1047 publications