? Metabolomics Core Based on the success of the Cancer Metabolism Developing Shared Resource and growing scientific needs of ACC members, the ACC established the Metabolomics Core as a full-fledged Shared Resource, with an expanded array of services. Dr. Daniel Kelly, Ware Professor of Diabetes and Metabolic Diseases, has assumed leadership of this Shared Resource. Dr. Kelly is a well-recognized expert in mitochondrial metabolism and leader in the study of the metabolic origins of diseases in his over 25-year career. This new Shared Resource is staffed by Technical Director Dr. Christopher Petucci, along with a fully trained analytical chemist. Dr. Petucci has over 20 years of experience in mass spectrometry, including extensive expertise in measuring metabolites in cells, biological fluids, and tissues from animals and humans. The Metabolomics Core provides critically needed state-of-the-art targeted and untargeted metabolomics and lipidomics services to ACC researchers, which are extremely cost-effective compared to the out-sourcing used in the past. The Metabolomics Core: 1) provides well-validated, quantitative, targeted liquid chromatography-mass spectrometry (LC/MS) metabolomics of 127 metabolites from samples including cells, plasma, and tissues; 2) provides untargeted metabolomics and lipidomics platforms, for metabolite and lipid discovery; 3) performs LC/MS method development for custom metabolite assays tailored to individual needs; and 4) provides education and training in the use of the these technologies. The Metabolomics Core has four triple quadrupole mass spectrometers, two high resolution instruments (one for metabolomics and lipidomics, and one for protein quantification), Agilent 1290 Infinity HPLC and 6495B triple quadrupole mass spectrometers for targeted metabolomics and a Thermo Fisher Scientific UHPLC/Orbitrap ID-X mass spectrometer for untargeted metabolomics and lipidomics. ACC members accounted for 26 of 56 investigators (46%) using the Shared Resource during the most recent reporting period (07/01/18-06/30/19). As one example of high impact research dependent upon the Metabolomics Core Shared Resource, Dr. Carl June (Immunobiology) evaluated the attributes of CAR costimulatory domains and demonstrated that CAR-T cells with 4-1BB coreceptors increase respiratory capacity, fatty acid oxidation and mitochondrial biogenesis, in contrast to CAR-T cells with CD28 coreceptors which had metabolomics consistent with enhanced glycolysis in effector memory cells (Kawalekar et al., Immunity, 2016), which has already impacted clinical trial design. The Metabolomics Core is supported by the ACC in partnership with Penn's Cardiovascular Institute and the Institute for Diabetes, Obesity and Metabolism. The mission of the Metabolomics Core is to provide ACC members with a world-class platform providing new discoveries and insight into cellular metabolic mechanisms, which can be integrated with genetics, epigenetics, cell signaling, and other molecular bases of cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016520-45
Application #
10088764
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1997-01-15
Project End
2025-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
45
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Hinderer, Christian; Katz, Nathan; Buza, Elizabeth L et al. (2018) Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum Gene Ther 29:285-298
Li, Jinyang; Byrne, Katelyn T; Yan, Fangxue et al. (2018) Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune Cell Infiltration and Response to Immunotherapy. Immunity 49:178-193.e7
Raghunathan, Nirupa Jaya; Korenstein, Deborah; Li, Qing S et al. (2018) Determinants of mobile technology use and smartphone application interest in cancer patients. Cancer Med 7:5812-5819
Hordeaux, Juliette; Wang, Qiang; Katz, Nathan et al. (2018) The Neurotropic Properties of AAV-PHP.B Are Limited to C57BL/6J Mice. Mol Ther 26:664-668
Echevarría-Vargas, Ileabett M; Reyes-Uribe, Patricia I; Guterres, Adam N et al. (2018) Co-targeting BET and MEK as salvage therapy for MAPK and checkpoint inhibitor-resistant melanoma. EMBO Mol Med 10:
Torre, Eduardo; Dueck, Hannah; Shaffer, Sydney et al. (2018) Rare Cell Detection by Single-Cell RNA Sequencing as Guided by Single-Molecule RNA FISH. Cell Syst 6:171-179.e5
Vonderheide, Robert H (2018) The Immune Revolution: A Case for Priming, Not Checkpoint. Cancer Cell 33:563-569
Romero, Sally A D; Jones, Lee; Bauml, Joshua M et al. (2018) The association between fatigue and pain symptoms and decreased physical activity after cancer. Support Care Cancer 26:3423-3430
Safo, Sandra E; Li, Shuzhao; Long, Qi (2018) Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74:300-312
Kall, Stefanie L; Delikatny, Edward J; Lavie, Arnon (2018) Identification of a Unique Inhibitor-Binding Site on Choline Kinase ?. Biochemistry 57:1316-1325

Showing the most recent 10 out of 1047 publications