The Molecular Cytogenetics Facility (MCF) provides basic and clinical investigators with conventional and FISH-based cytogenetic services. The goals of the core are to provide 1) high-quality, reasonably-priced cytogenetic services and expertise for requesting investigators;2) standard chromosome karyotyping and G, C, Q, R, silver staining to ascertain chromosomal abnormalities for evidence of genomic instability; 3) fluorescence in situ hybridization (FISH) of metaphase spreads using commercially- available chromosome paint probes, locus-specific probes, and telomere probes;4) Spectral Karyotyping (SKY) service to unambiguously identify, in one hybridization reaction, mouse or human chromosomal translocations present within a metaphase spread;5) specialized services, such as telomere length determination by Quantitative-FISH (Q-FISH), on an as-needed basis;and 6) access to personnel who are highly-experienced in a variety of cytogenetic technologies as well as access to the methodologies themselves. The MCF avoids expensive duplication in individual faculty laboratories of personnel, facilities, and equipment required for application of these powerful tools. The Facility occupies 250 sq. ft. within the Department of Cancer Genetics. An additional 200 sq. ft. microscope room houses 4 fluorescent microscopes for chromosomal analyses. The MCF is staffed with a Director, a Co-Director, 1 Laboratory Assistant, 'and a Professor Emeritus. During the previous funding period, 741 specimens were collected for both conventional and FISH-based cytogenetic services. Peer-funded investigators are given priority for MCF services that were used by 76 investigators from 18 of the 19 CCSG programs. 92% of users had peerreviewed funding and accounted for 85% of utilization. Since its inception, the MCF has successfully supported 5 peer-reviewed NIH-funded grants and investigators using data generated by the MCF have published extensively in top-tier journals. Future plans are to establish new cytogenetic services as well as to upgrade existing technologies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016672-34
Application #
7928904
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
34
Fiscal Year
2009
Total Cost
$163,067
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Hyman, David M; Piha-Paul, Sarina A; Won, Helen et al. (2018) HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 554:189-194
Takahashi, Koichi; Wang, Feng; Morita, Kiyomi et al. (2018) Integrative genomic analysis of adult mixed phenotype acute leukemia delineates lineage associated molecular subtypes. Nat Commun 9:2670
Yazbeck, Victor; Shafer, Danielle; Perkins, Edward B et al. (2018) A Phase II Trial of Bortezomib and Vorinostat in Mantle Cell Lymphoma and Diffuse Large B-cell Lymphoma. Clin Lymphoma Myeloma Leuk 18:569-575.e1
Kaushik, S; Liu, F; Veazey, K J et al. (2018) Genetic deletion or small-molecule inhibition of the arginine methyltransferase PRMT5 exhibit anti-tumoral activity in mouse models of MLL-rearranged AML. Leukemia 32:499-509
Trujillo-Ocampo, Abel; Cho, Hyun-Woo; Herrmann, Amanda C et al. (2018) Rapid ex vivo expansion of highly enriched human invariant natural killer T cells via single antigenic stimulation for cell therapy to prevent graft-versus-host disease. Cytotherapy 20:1089-1101
Zhang, Peijing; Xiao, Zhenna; Wang, Shouyu et al. (2018) ZRANB1 Is an EZH2 Deubiquitinase and a Potential Therapeutic Target in Breast Cancer. Cell Rep 23:823-837
Das, Prosun; Veazey, Kylee J; Van, Hieu T et al. (2018) Histone methylation regulator PTIP is required to maintain normal and leukemic bone marrow niches. Proc Natl Acad Sci U S A 115:E10137-E10146
Jeter, Melenda D; Gomez, Daniel; Nguyen, Quynh-Nhu et al. (2018) Simultaneous Integrated Boost for Radiation Dose Escalation to the Gross Tumor Volume With Intensity Modulated (Photon) Radiation Therapy or Intensity Modulated Proton Therapy and Concurrent Chemotherapy for Stage II to III Non-Small Cell Lung Cancer: A P Int J Radiat Oncol Biol Phys 100:730-737
Cardenas, Eduardo I; Breaux, Keegan; Da, Qi et al. (2018) Platelet Munc13-4 regulates hemostasis, thrombosis and airway inflammation. Haematologica 103:1235-1244
Steers, Mai-Ly N; Chen, Tzu-An; Neisler, Julie et al. (2018) The buffering effect of social support on the relationship between discrimination and psychological distress among church-going African-American adults. Behav Res Ther :

Showing the most recent 10 out of 12418 publications