The primary goal of the Protocol Review and Monitoring System (PRMS) is to ensure that all human subjects research is of the highest scientific quality. This resource is available to over 1300 faculty members. Over the past 5 years, on average annual 542 faculty members utilized the PRMS and participated in human subjects research each year. PRMS is supported by 29 staff members under the direction of Dr. Maurie Markman, Vice President for Clinical Research. The core function of the PRMS is to provide a mechanism to assure adequate internal oversight of the scientific and research aspects of all institutional clinical trials. The focus is to review the scientific merit, progress, and priorities of the clinical research protocols conducted by the faculty. This function is coordinated by PRMS as a single source of service, support and oversight. The PRMS is made of up several subcommittees that are designated to provide scientific review and approval for new research protocols, as well as monitor the progress of the protocols. During the last five years, new services provided include a function that allows Regulatory Specialists to review new submissions for format and completeness of information and either reject or accept the submissions electronically. This includes the use of a specialized electronic information sheet (a resubmission memo) that lists amendments made prior to resubmitting the revised protocol document. This is a valuable tool that is also used during the review process when a protocol is initially submitted. The electronic review document provided by each assigned reviewer during the scientific review process can be compared to this resubmission memo to ensure all items of concern have been addressed by the investigator. Additionally, the electronic protocol eligibility, abstract, and informed consent documents for all trials that have been submitted through the PDOL are made available on an intranet web page that is accessible by the patient care units. The navigational web page provides protocol status information as well, including when a protocol has been closed to new subject accrual. This allows caregivers to have ready access to current protocol information from time of activation, during new subject accrual and treatment though completion of the protocol. This information is provided in real time and no delays occur after regulatory approval of the protocol. During the last fiscal year, the funds used to support the PRMS function were $246,418 (15%) from the Cancer Center Support Grant (CCSG), $172,163 (10%) from user fees, and $1,259,771 (75%) from the institution. It is projected that in the next award cycle, the increase in support provided by the CCSG will alter the sources of funds such that the percentages provided by the CCSG ($258,228), the user fees ($286,937) and the institution ($1,526,868), will be 12%, 14% and 74%, respectively. The PRMS supported 2739 protocols from 599 cancer center members, of which 81% hold peer-reviewed funding. During the last several years, the number of new protocols managed by PRMS has remained constant. Protocols that do not meet the UTMDACC scientific standards are typically withdrawn from submission and review. While the volume of protocols has not increased, the activity involved in oversight has become increasingly more detailed due to the evolution of regulatory requirements.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016672-35
Application #
8144406
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
35
Fiscal Year
2010
Total Cost
$378,503
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Viswanathan, Chitra; Faria, Silvana; Devine, Catherine et al. (2018) [18F]-2-Fluoro-2-Deoxy-D-glucose-PET Assessment of Cervical Cancer. PET Clin 13:165-177
Debnam, James M; Chi, Tzehping L; Ketonen, Leena et al. (2018) Superiority of Multidetector Computed Tomography With 3-Dimensional Volume Rendering Over Plain Radiography in the Assessment of Spinal Surgical Instrumentation Complications in Patients With Cancer. J Comput Assist Tomogr :
Patel, V K; Lamothe, B; Ayres, M L et al. (2018) Pharmacodynamics and proteomic analysis of acalabrutinib therapy: similarity of on-target effects to ibrutinib and rationale for combination therapy. Leukemia 32:920-930
Ravandi, Farhad; Ritchie, Ellen K; Sayar, Hamid et al. (2018) Phase 3 results for vosaroxin/cytarabine in the subset of patients ?60 years old with refractory/early relapsed acute myeloid leukemia. Haematologica 103:e514-e518
Assi, Rita; Kantarjian, Hagop M; Kadia, Tapan M et al. (2018) Final results of a phase 2, open-label study of indisulam, idarubicin, and cytarabine in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome. Cancer 124:2758-2765
Yam, Clinton; Murthy, Rashmi K; Valero, Vicente et al. (2018) A phase II study of tipifarnib and gemcitabine in metastatic breast cancer. Invest New Drugs 36:299-306
Lacourt, Tamara E; Vichaya, Elisabeth G; Escalante, Carmen et al. (2018) An effort expenditure perspective on cancer-related fatigue. Psychoneuroendocrinology 96:109-117
Ni, Haiwen; Shirazi, Fazal; Baladandayuthapani, Veerabhadran et al. (2018) Targeting Myddosome Signaling in Waldenström's Macroglobulinemia with the Interleukin-1 Receptor-Associated Kinase 1/4 Inhibitor R191. Clin Cancer Res 24:6408-6420
Neelapu, Sattva S; Tummala, Sudhakar; Kebriaei, Partow et al. (2018) Toxicity management after chimeric antigen receptor T cell therapy: one size does not fit 'ALL'. Nat Rev Clin Oncol 15:218
Cortes, Jorge; Tamura, Kenji; DeAngelo, Daniel J et al. (2018) Phase I studies of AZD1208, a proviral integration Moloney virus kinase inhibitor in solid and haematological cancers. Br J Cancer 118:1425-1433

Showing the most recent 10 out of 12418 publications