The Flow Cytometry and Cellular imaging Facility (FCCIF) was established to provide access to state-of-the art cell analysis technology for MD Anderson investigators, and provides cell sorting, analytical flow cytometry, cellular imaging and custom monoclonal antibody (mAb) conjugations to its users. The Core provides researchers with technical expertise in instrument operation, assay development, data acquisition and various analysis techniques. Analytical flow cytometry is an indispensable tool for the study of all aspects of cell biology, including protein expression, cell proliferation and differentiation, cell signaling pathways, enzyme activity, gene regulation, ceil lineage, apoptosis, autophagy and chemotherapeutic resistance. The Core has recently acquired a DVS CyTOF Mass Cytometer, enabling the detection and characterization of up to 100 molecular markers at the single cell level. This instrument represents a transformational technology enabling the detection and characterization of rare and mixed cell populations on the single cell level. Cell sorting. Cell isolation for culture and further characterization is performed via droplet-based sorting, which isolates a wide variety of cells based on combinations of antibody-based stains, fluorescent protein expression, and viability indicators. Imaging. The Core offers researchers tools and techniques for image acquisition, SD-reconstruction, and time-series observation as well as a variety of image processing and analysis functions via laser scanning cytometry and confocal microscopy and also offers multispectral, epifluorescent, and colorimetric microscopy. Custom mAb conjugations. Antibody conjugation is a new service of the FCCIF that provides conjugates with fluors and tags that are not commercially available. The FCCIF uses 24 major instrument systems supporting the research of-345 investigators who hold 13 POIs, 112 ROIs, and 9 P50 SPOREs. Peer-reviewed investigators account for 94% of the utilization, and 35% of total cost is requested from the CCSG. Over the past 5 years, the FCCIF has performed more than 50,000 hours of service, representing a 125% increase over the prior grant period. Over the past 5 years, the FCCIF has facilitated publication of 408 reports, with 67% in journals with an impact factor >5 and 22% with an impact factor >10. In the future, the FCCIF will continue to develop the use of the current instrumentation, including the DVS Sciences CyTOF, and novel analysis programs, including the SPADE algorithm. Older equipment will be replaced, and an Amnis Image Stream, a Vectra 2 automated multispectral imaging system and single-cell analysis systems such as Fluidigm's BioMark may be added.

Public Health Relevance

The FCCIF constitutes a point of convergence of many research programs, as evidenced by service to 300 principal investigators. Additional services like custom monoclonal antibody conjugations allow MD Anderson researchers to expand the list of identifiable markers both for profiling and for cell sorting. PROJECT/

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
4P30CA016672-41
Application #
9097560
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
41
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Sankhala, Kamalesh; Takimoto, Chris H; Mita, Alain C et al. (2018) Two phase I, pharmacokinetic, and pharmacodynamic studies of DFP-10917, a novel nucleoside analog with 14-day and 7-day continuous infusion schedules. Invest New Drugs :
Shen, Weining; Ning, Jing; Yuan, Ying et al. (2018) Model-free scoring system for risk prediction with application to hepatocellular carcinoma study. Biometrics 74:239-248
Wu, Shaofang; Wang, Shuzhen; Gao, Feng et al. (2018) Activation of WEE1 confers resistance to PI3K inhibition in glioblastoma. Neuro Oncol 20:78-91
Romano, Gabriele; Chen, Pei-Ling; Song, Ping et al. (2018) A Preexisting Rare PIK3CAE545K Subpopulation Confers Clinical Resistance to MEK plus CDK4/6 Inhibition in NRAS Melanoma and Is Dependent on S6K1 Signaling. Cancer Discov 8:556-567
Dray, Beth K; Raveendran, Muthuswamy; Harris, R Alan et al. (2018) Mismatch repair gene mutations lead to lynch syndrome colorectal cancer in rhesus macaques. Genes Cancer 9:142-152
Keene, Kimberly S; King, Tari; Hwang, E Shelley et al. (2018) Molecular determinants of post-mastectomy breast cancer recurrence. NPJ Breast Cancer 4:34
Zhang, Miao; Adeniran, Adebowale J; Vikram, Raghunandan et al. (2018) Carcinoma of the urethra. Hum Pathol 72:35-44
Ciurea, Stefan O; Bittencourt, Maria Cecilia Borges; Milton, DenĂ¡i R et al. (2018) Is a matched unrelated donor search needed for all allogeneic transplant candidates? Blood Adv 2:2254-2261
Chiu, Hua-Sheng; Somvanshi, Sonal; Patel, Ektaben et al. (2018) Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context. Cell Rep 23:297-312.e12
Zhang, Yu; Zoltan, Michelle; Riquelme, Erick et al. (2018) Immune Cell Production of Interleukin 17 Induces Stem Cell Features of Pancreatic Intraepithelial Neoplasia Cells. Gastroenterology 155:210-223.e3

Showing the most recent 10 out of 12418 publications