The Immunology Program includes 30 members (26 primary, 3 associate, 1 adjunct) from 9 departments. The program is led by Dr. James Allison, an international authority on exploring fundamental mechanisms of the immune response and checkpoint control, with co-leaders Dr. Jeffrey Molldrem, providing expertise in stem cell and translational research, and Dr. Patrick Hwu, lending his extensive experience in novel vaccines and adoptive T-cell therapies. The scientific goal of the Immunology Program is to conduct important studies in basic immunology and translate the findings into effective cancer immunotherapy. The program focuses on 4 themes: 1) immune regulation, 2) immune checkpoint blockade, 3) cancer vaccines, and 4) T-cell therapies, each with a specific aim:
Aim 1 : To understand fundamental mechanisms involved in regulating innate and adaptive immune responses.
Aim 2 : To elucidate fundamental cellular and molecular mechanisms of immune checkpoints and their impact on the tumor microenvironment by using preclinical models and clinical trials to identify the basis for failure of response to therapy or relapse.
Aim 3 : To identify novel targets for cancer vaccine development that will enable vaccination strategies to be more widely applied to the prevention and treatment of cancer.
Aim 4 : To improve the success rate of T-cell-based therapies using a combinatorial approach (T-cell therapy and checkpoint control) to improve clinical responses. Work on the Immunotherapy Platform, led by program members Drs. Allison, Padmanee Sharma, and Hwu and funded by the cancer center, spans multiple aims and serves as a mechanism to foster iterative cycles of translation between basic and clinical work by providing immune monitoring of patient samples and driving new preclinical and clinical studies by generating mechanistic data to inform rational design of new drug combinations. As of May 1, 2018, 3,434 patients have been enrolled across 118 different clinical trials. Annual direct peer-reviewed funding for the Immunology Program is $6.4M, with $1.9M (30%) from NCI grants and $4.5M (70%) from other peer-reviewed sources. Since the last submission, the program has produced 464 published papers: 184 (40%) are intraprogrammatic collaborations, 250 (54%) are interprogrammatic collaborations, and 278 (60%) are external collaborations. Sixty-five percent of articles appeared in journals with IF >5, and 31% appeared in journals with IF >10, including N Engl J Med, Nature, Cell, Science, Cancer Discov, Immunity, and Proc Natl Acad Sci USA. Program members use all 14 shared resources. Notable accomplishments during the last grant period included the demonstration that anti- CTLA-4 and anti-PD-1 therapies act on distinct T-cell populations, providing an explanation for the benefit achieved by combined therapy, and discovery of a positive correlation between gut microbiome diversity and response to immune checkpoint blockade therapy that is transferred along with fecal transplants. See the Program Highlights for other noteworthy accomplishments.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016672-44
Application #
9997814
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
44
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Viswanathan, Chitra; Faria, Silvana; Devine, Catherine et al. (2018) [18F]-2-Fluoro-2-Deoxy-D-glucose-PET Assessment of Cervical Cancer. PET Clin 13:165-177
Debnam, James M; Chi, Tzehping L; Ketonen, Leena et al. (2018) Superiority of Multidetector Computed Tomography With 3-Dimensional Volume Rendering Over Plain Radiography in the Assessment of Spinal Surgical Instrumentation Complications in Patients With Cancer. J Comput Assist Tomogr :
Patel, V K; Lamothe, B; Ayres, M L et al. (2018) Pharmacodynamics and proteomic analysis of acalabrutinib therapy: similarity of on-target effects to ibrutinib and rationale for combination therapy. Leukemia 32:920-930
Ravandi, Farhad; Ritchie, Ellen K; Sayar, Hamid et al. (2018) Phase 3 results for vosaroxin/cytarabine in the subset of patients ?60 years old with refractory/early relapsed acute myeloid leukemia. Haematologica 103:e514-e518
Assi, Rita; Kantarjian, Hagop M; Kadia, Tapan M et al. (2018) Final results of a phase 2, open-label study of indisulam, idarubicin, and cytarabine in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome. Cancer 124:2758-2765
Yam, Clinton; Murthy, Rashmi K; Valero, Vicente et al. (2018) A phase II study of tipifarnib and gemcitabine in metastatic breast cancer. Invest New Drugs 36:299-306
Lacourt, Tamara E; Vichaya, Elisabeth G; Escalante, Carmen et al. (2018) An effort expenditure perspective on cancer-related fatigue. Psychoneuroendocrinology 96:109-117
Ni, Haiwen; Shirazi, Fazal; Baladandayuthapani, Veerabhadran et al. (2018) Targeting Myddosome Signaling in Waldenström's Macroglobulinemia with the Interleukin-1 Receptor-Associated Kinase 1/4 Inhibitor R191. Clin Cancer Res 24:6408-6420
Neelapu, Sattva S; Tummala, Sudhakar; Kebriaei, Partow et al. (2018) Toxicity management after chimeric antigen receptor T cell therapy: one size does not fit 'ALL'. Nat Rev Clin Oncol 15:218
Cortes, Jorge; Tamura, Kenji; DeAngelo, Daniel J et al. (2018) Phase I studies of AZD1208, a proviral integration Moloney virus kinase inhibitor in solid and haematological cancers. Br J Cancer 118:1425-1433

Showing the most recent 10 out of 12418 publications