9.1.3 EXPERIMENTAL MOUSE SHARED SERVICE The Experimental Mouse Shared Service (EMSS) is a one-stop shared service for all your in vivo mouse experimentation needs. The purpose of the EMSS is to provide investigators at the Arizona Cancer Center (AZCC) with experimental mouse models and with a wide range of mouse experimentation techniques. The EMSS has combined the previous Genetically Engineered Mouse """"""""Developmental"""""""" Shared Service (GEMSS) and the previous EMSS. Therefore, the EMSS begins with the design and construction of gene targeting and transgenic mouse vectors, gene targeting and ES cell screening for targeted Clones, production of genetargeted mice, production of transgenic mice, screening for transgenic and knockout founders, embryo rederivation for pathogen cleanup and cryopreservation of mouse strains through to complete experimentation services in all aspects of xenograft and GEM models. The specific objectives of the EMSS include creation of models, maintenance of shared and investigator colonies, assistance in the design of in vivo experiments, and performance of mouse experiments by personnel with expertise in mouse experimental protocols. Hence, the EMSS provides consistency and quality of procedures within and between mouse experiments that ensures accuracy in experimental results, confidence in interpretation of results, and an inner-consistency between mouse experiments which is essential for intra-lab and inter-lab comparative analyses. Due to the fact that the mouse is a model for all translational cancer work for both NIH-type funding as well as progression to clinical trials, the EMSS is an absolutely essential shared service. The benefits of the EMSS are to provide AZCC investigators with a cost-effective mechanism for the creation of different mouse models and for completing in vivo mouse experiments utilizing highly trained and experienced technicians. The EMSS continues to expand its services in a very cost-effective and efficient manner.

Public Health Relevance

Provides a continuum of services for AZCC investigators that ranges from experimental design, to GEM production, to mouse experimentation, thereby enabling the AZCC investigator to generate and utilize mouse models of human cancer to their fullest potential without the investigator having to be an expert on mouse genetic engineering or mouse experimentation.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA023074-31
Application #
7944527
Study Section
Subcommittee G - Education (NCI)
Project Start
2009-08-19
Project End
2014-06-30
Budget Start
2009-08-19
Budget End
2010-06-30
Support Year
31
Fiscal Year
2009
Total Cost
$196,931
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
McLamarrah, Tiffany A; Buster, Daniel W; Galletta, Brian J et al. (2018) An ordered pattern of Ana2 phosphorylation by Plk4 is required for centriole assembly. J Cell Biol 217:1217-1231
Mannakee, Brian K; Balaji, Uthra; Witkiewicz, Agnieszka K et al. (2018) Sensitive and specific post-call filtering of genetic variants in xenograft and primary tumors. Bioinformatics 34:1713-1718
Glassman, Caleb R; Parrish, Heather L; Lee, Mark S et al. (2018) Reciprocal TCR-CD3 and CD4 Engagement of a Nucleating pMHCII Stabilizes a Functional Receptor Macrocomplex. Cell Rep 22:1263-1275
Nair, Uma S; Brady, Benjamin R; O'Connor, Patrick A et al. (2018) Factors Predicting Client Re-Enrollment in Tobacco Cessation Services in a State Quitline. Prev Chronic Dis 15:E126
Akam, E A; Utterback, R D; Marcero, J R et al. (2018) Disulfide-masked iron prochelators: Effects on cell death, proliferation, and hemoglobin production. J Inorg Biochem 180:186-193
Hadinger, Kyle P; Marshalek, Joseph P; Sheeran, Paul S et al. (2018) Optimization of Phase-Change Contrast Agents for Targeting MDA-MB-231 Breast Cancer Cells. Ultrasound Med Biol 44:2728-2738
Galbraith, David W; Sliwinska, Elwira; Samadder, Partha (2018) Nuclear Cytometry: Analysis of the Patterns of DNA Synthesis and Transcription Using Flow Cytometry, Confocal Microscopy, and RNA Sequencing. Methods Mol Biol 1678:371-392
Han, Jiali; Li, Jianrong; Achour, Ikbel et al. (2018) Convergent downstream candidate mechanisms of independent intergenic polymorphisms between co-classified diseases implicate epistasis among noncoding elements. Pac Symp Biocomput 23:524-535
Zeltzer, Sebastian; Zeltzer, Carol A; Igarashi, Suzu et al. (2018) Virus Control of Trafficking from Sorting Endosomes. MBio 9:
Nguyen, Mike M; Martinez, Jessica A; Hsu, Chiu-Hsieh et al. (2018) Bioactivity and prostate tissue distribution of metformin in a preprostatectomy prostate cancer cohort. Eur J Cancer Prev 27:557-562

Showing the most recent 10 out of 1336 publications