Pharmacokinetic studies have long been a key element of most Phase I and Phase II clinical studies.Pharmacodynamic studies and molecular correlates are now considered important components of thesestudies. With the increasing emphasis on the development of non-cytotoxic agents directed at novel targets,'correlative' studies will be essential for the interpretation of the results and, in fact, may become theprimary endpoint of the clinical studies. Therefore, the primary aim of the Analytical Pharmacology CoreFacility (APCF) is to provide support for chemotherapy trials incorporating pharmacokinetic,pharmacodynamic and other correlative laboratory studies. An additional aim is to encourage and facilitateall cancer research, including basic and translational research, by providing a range of analytical services,such as LC/MS/MS, GC/MS, HPLC, and flameless Atomic Absorption Spectrometry (AAS). Morespecifically, the APCF provides expertise and equipment for (a) sample preparation and storage, includingtissue samples for correlative studies, (b) analysis of chemotherapeutic drugs and related compounds, and(c) analysis and interpretation of pharmacokinetic and pharmacodynamic data. In addition, the APCFpersonnel provide consultation regarding appropriate analytical methods for research projects, study design,pharmacokinetic sampling schedules, and protocol review, and they collaborate in the preparation ofmanuscripts. During the 12-month reporting period, the APCF shared resource was used by 15 CancerCenter members from 4 Research Programs and one non-aligned member. Peer-reviewed usagerepresented 89% of total usage. Annual budget for this core is $292,151, of which 64% is institutionalfunding, 15% is user fees, and 21% ($60,100) is requested from the CCSG.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA033572-25
Application #
7714117
Study Section
Subcommittee G - Education (NCI)
Project Start
2008-09-01
Project End
2012-11-30
Budget Start
2008-09-01
Budget End
2008-11-30
Support Year
25
Fiscal Year
2008
Total Cost
$42,628
Indirect Cost
Name
City of Hope/Beckman Research Institute
Department
Type
DUNS #
027176833
City
Duarte
State
CA
Country
United States
Zip Code
91010
Raz, Dan J; Wu, Geena X; Consunji, Martin et al. (2018) The Effect of Primary Care Physician Knowledge of Lung Cancer Screening Guidelines on Perceptions and Utilization of Low-Dose Computed Tomography. Clin Lung Cancer 19:51-57
Solomon, Ilana; Rybak, Christina; Van Tongeren, Lily et al. (2018) Experience Gained from the Development and Execution of a Multidisciplinary Multi-syndrome Hereditary Colon Cancer Family Conference. J Cancer Educ :
Tirughana, Revathiswari; Metz, Marianne Z; Li, Zhongqi et al. (2018) GMP Production and Scale-Up of Adherent Neural Stem Cells with a Quantum Cell Expansion System. Mol Ther Methods Clin Dev 10:48-56
Cheng, Chun-Ting; Qi, Yue; Wang, Yi-Chang et al. (2018) Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction. Commun Biol 1:178
Cho, H; Ayers, K; DePills, L et al. (2018) Modelling acute myeloid leukaemia in a continuum of differentiation states. Lett Biomath 5:S69-S98
Wang, Dongrui; Aguilar, Brenda; Starr, Renate et al. (2018) Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity. JCI Insight 3:
Liu, Xuxiang; Cao, Minghui; Palomares, Melanie et al. (2018) Metastatic breast cancer cells overexpress and secrete miR-218 to regulate type I collagen deposition by osteoblasts. Breast Cancer Res 20:127
Das, Sadhan; Reddy, Marpadga A; Senapati, Parijat et al. (2018) Diabetes Mellitus-Induced Long Noncoding RNA Dnm3os Regulates Macrophage Functions and Inflammation via Nuclear Mechanisms. Arterioscler Thromb Vasc Biol 38:1806-1820
Querfeld, Christiane; Leung, Samantha; Myskowski, Patricia L et al. (2018) Primary T Cells from Cutaneous T-cell Lymphoma Skin Explants Display an Exhausted Immune Checkpoint Profile. Cancer Immunol Res 6:900-909
Chiuppesi, Flavia; Nguyen, Jenny; Park, Soojin et al. (2018) Multiantigenic Modified Vaccinia Virus Ankara Vaccine Vectors To Elicit Potent Humoral and Cellular Immune Reponses against Human Cytomegalovirus in Mice. J Virol 92:

Showing the most recent 10 out of 1396 publications