The goal of the Transgenic/knock-out Mouse Core (TMC) is to produce genetically modified mice as in vivo models for exploring the normal function of genes, and the role of genetic mutations in the etiology and treatment of cancer. The range of modifications that can be introduced into the genome of the laboratory mouse include integration of exogenous DMA (transgenes) useful in gain-of-function and cell labeling, and the precise excision (knock-out) or alteration (knock-in) of gene function that can be controlled both tissuespecifically and temporally. Transgenic and knock-in/knock-out mice are often the logical extension of studies initiated in vitro, and provide a model system with greater anatomical and physiological relevance to human disease. Genetically modified mice have been essential tools in elucidating the molecular underpinnings of many types of cancer, and supplement the traditional sub-cutaneous xenograft model for testing new anti-cancer therapies. During the most recent 12-month reporting period (January 2005 to December 2005) nine Cancer Center members from 3 programs and one non-aligned member used the transgenic/knock-out mouse shared resource. The number of users with peer-reviewed funding represented 66% of users overall. Annual budget for the core is $269,657, with 68% from the institution, 13% from user fees, and 19% ($50,000) requested from the CCSG.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA033572-26
Application #
8182246
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2008-12-01
Budget End
2009-11-30
Support Year
26
Fiscal Year
2009
Total Cost
$35,447
Indirect Cost
Name
City of Hope/Beckman Research Institute
Department
Type
DUNS #
027176833
City
Duarte
State
CA
Country
United States
Zip Code
91010
Raz, Dan J; Wu, Geena X; Consunji, Martin et al. (2018) The Effect of Primary Care Physician Knowledge of Lung Cancer Screening Guidelines on Perceptions and Utilization of Low-Dose Computed Tomography. Clin Lung Cancer 19:51-57
Solomon, Ilana; Rybak, Christina; Van Tongeren, Lily et al. (2018) Experience Gained from the Development and Execution of a Multidisciplinary Multi-syndrome Hereditary Colon Cancer Family Conference. J Cancer Educ :
Tirughana, Revathiswari; Metz, Marianne Z; Li, Zhongqi et al. (2018) GMP Production and Scale-Up of Adherent Neural Stem Cells with a Quantum Cell Expansion System. Mol Ther Methods Clin Dev 10:48-56
Cheng, Chun-Ting; Qi, Yue; Wang, Yi-Chang et al. (2018) Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction. Commun Biol 1:178
Cho, H; Ayers, K; DePills, L et al. (2018) Modelling acute myeloid leukaemia in a continuum of differentiation states. Lett Biomath 5:S69-S98
Wang, Dongrui; Aguilar, Brenda; Starr, Renate et al. (2018) Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity. JCI Insight 3:
Liu, Xuxiang; Cao, Minghui; Palomares, Melanie et al. (2018) Metastatic breast cancer cells overexpress and secrete miR-218 to regulate type I collagen deposition by osteoblasts. Breast Cancer Res 20:127
Das, Sadhan; Reddy, Marpadga A; Senapati, Parijat et al. (2018) Diabetes Mellitus-Induced Long Noncoding RNA Dnm3os Regulates Macrophage Functions and Inflammation via Nuclear Mechanisms. Arterioscler Thromb Vasc Biol 38:1806-1820
Querfeld, Christiane; Leung, Samantha; Myskowski, Patricia L et al. (2018) Primary T Cells from Cutaneous T-cell Lymphoma Skin Explants Display an Exhausted Immune Checkpoint Profile. Cancer Immunol Res 6:900-909
Chiuppesi, Flavia; Nguyen, Jenny; Park, Soojin et al. (2018) Multiantigenic Modified Vaccinia Virus Ankara Vaccine Vectors To Elicit Potent Humoral and Cellular Immune Reponses against Human Cytomegalovirus in Mice. J Virol 92:

Showing the most recent 10 out of 1396 publications