The goal of the Analytical Cytometry Core (ACC) is to provide the COHCCC members, through its facilities, leading-edge equipment and experienced operators to measure properties of cells and their components, isolate those cells and their components and present the data acquired for internal analysis and external review. Flow cytometry instrumentation available through this core resource includes: 3 high speed cell sorters (MoFlo, BD FACS Aria SORP and BD FACS Aria 111), and 4 analytical cytometers (Cyan, Gallios, LSR Fortessa and C6). The flow cytometry instrumentation provides investigators with the tools to analyze and isolate cells at speeds of up to 20,000 cells/second based on multiple fluorescent labels (up to 18) and light scatter properties with high yield (up to 90% based on speed) and extreme purity (99%). Additionally, the BD Aha 11 SORP is contained in a biosafety cabinet and allows users to sort live (potentially infectious) samples. All instrumentation in the ACC is subject to either daily (sorters and Fortessa) or weekly (Gallios, CyAn, and C6) quality control assessment and routine preventive maintenance and calibration. All data generated in the ACC is available through the institutional cyber-infrastructure network for further analysis and preparation for presentation or publication. Network based data processing software is offered by the core and a Laboratory Information Management System (LIMS) is being developed to help track experiment related meta data and archived file retrieval. Another key role of ACC is to provide flow cytometry training from basic theory, experimental design, software usage and operation of the cytometers to COHCCC members.
The overall goal of the Analytical Cytometry Core facility is to provide leading-edge equipment and experienced operators to measure properties of cells and their components, isolate those cells and present the data acquired for analysis and review. This goal promotes the Cancer Center's mission of developing innovative new disease-fighting strategies in the battle against cancer.
Showing the most recent 10 out of 1396 publications