Phenotyping Technologies (PT) incorporates the Histopathology and Imaging Sciences and Flow Cytometry Service functions to deliver unparalleled access to a complete phenotyping platform. Long-established Histopathology Sciences (HPS), led by Ms. Lesley Bechtold, combines scanning and transmission electron microscopy technologies, histology, and clinical assessment. The seven full-time ASCP-certified histotechnologists [HT (ASCP)] provide a comprehensive resource for preparation and morphological analysis of specimens. These Staff deliver tissue processing, paraffin and plastic embedding, cryoembedding and step, serial and cryo-sectioning;the service supports over 135 special stains and delivers immunohistochemistry services. Two full-time employees (FTE) deliver clinical chemistry and hematology analysis. Two full-time electron microscopists deliver specimen processing and preparation for examination by transmission and scanning electron microscopy;custom protocol development and consultative services are also available. Led by Dr. James Denegre, the Imaging Sciences component of the Phenotyping Technologies group delivers Light and Confocal Microscopy, Cytogenetics and Flow Cytometry Services, three Microscopy FTE provide extensive wide-field, confocal, laser-capture, image analysis and cytogenetics offerings. Instruments include two confocal microscopes, three wide field fluorescent microscopes, two stereo scopes (one of which is equipped for fluorescence), a digital pathology slide scanner, a spectral karyotyping system, and a 4Pi microscope. The Flow Cytometry function, staffed by two experienced cytometrists, is equipped with five analytical cytometers, one sorting cytometer, one imaging cytometer and a magnetic cell sorter as well as analytical workstations. Comprehensive training is provided for all microscopy and cytometry platforms, enabling authorized users independent operational access 24- hours-a-day. All Staff offer experimental design consultation, sample preparation, data acquisifion and analysis services. Advanced training is also provided through Service facilitated seminars. An extensive antibody reagent repository for flow and microscopy applications is maintained by the core. Users can work with facility staff to develop and execute analytical routines using workstations within the facility, and staff also develop scripts for automation of image analysis tasks. Collectively these highly interactive services offer JAX Cancer Center members a comprehensive platform for the characterization of phenotypes and assessment of experimentally manipulated animal models.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA034196-29
Application #
8699308
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-08-01
Project End
2019-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
29
Fiscal Year
2014
Total Cost
$181,942
Indirect Cost
$77,975
Name
Jackson Laboratory
Department
Type
DUNS #
042140483
City
Bar Harbor
State
ME
Country
United States
Zip Code
04609
Sharma, Manju; Braun, Robert E (2018) Cyclical expression of GDNF is required for spermatogonial stem cell homeostasis. Development 145:
Shi, Jiayuan; Hua, Li; Harmer, Danielle et al. (2018) Cre Driver Mice Targeting Macrophages. Methods Mol Biol 1784:263-275
Hosur, Vishnu; Farley, Michelle L; Low, Benjamin E et al. (2018) RHBDF2-Regulated Growth Factor Signaling in a Rare Human Disease, Tylosis With Esophageal Cancer: What Can We Learn From Murine Models? Front Genet 9:233
Johnson, Kenneth R; Gagnon, Leona H; Tian, Cong et al. (2018) Deletion of a Long-Range Dlx5 Enhancer Disrupts Inner Ear Development in Mice. Genetics 208:1165-1179
Dominguez, Pilar M; Ghamlouch, Hussein; Rosikiewicz, Wojciech et al. (2018) TET2 Deficiency Causes Germinal Center Hyperplasia, Impairs Plasma Cell Differentiation, and Promotes B-cell Lymphomagenesis. Cancer Discov 8:1632-1653
Paigen, Kenneth; Petkov, Petko M (2018) PRDM9 and Its Role in Genetic Recombination. Trends Genet 34:291-300
Schloss, Jennifer; Ali, Riyasat; Racine, Jeremy J et al. (2018) HLA-B*39:06 Efficiently Mediates Type 1 Diabetes in a Mouse Model Incorporating Reduced Thymic Insulin Expression. J Immunol 200:3353-3363
Nakatsuji, Teruaki; Chen, Tiffany H; Butcher, Anna M et al. (2018) A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv 4:eaao4502
Racine, Jeremy J; Stewart, Isabel; Ratiu, Jeremy et al. (2018) Improved Murine MHC-Deficient HLA Transgenic NOD Mouse Models for Type 1 Diabetes Therapy Development. Diabetes 67:923-935
Ye, Fengdan; Jia, Dongya; Lu, Mingyang et al. (2018) Modularity of the metabolic gene network as a prognostic biomarker for hepatocellular carcinoma. Oncotarget 9:15015-15026

Showing the most recent 10 out of 1156 publications