The Cancer Model Development Resource (CMDR) at JAX is a component of Genetic Resource Science (GRS), a group of over 100 people with broad expertise in mouse genetics and molecular biology necessary to manipulate the mouse genome. Dr. Leah Rae Donahue, Director of Genetic Resource Sciences, and Dr. Leonard Shultz, Professor, co-lead the CMDR. The CMDR provides JAX Cancer Center (JAXCC) investigators access to existing cancer models and supports development of new mouse models tailored to specific cancer research questions of importance to the Cancer Center. In turn, these models are made available to the JAXCC and wider scientific community through the GRS Repository. The CMDR provides JAXCC investigators access to mouse strains, the expertise of scientists in the Genetic Resource Science program, and project management. The GRS Repository is the largest single collection of genetically defined mouse strains anywhere in the world, and maintains an enormous variety of live strains (~1,600 at any given time), while other strains are maintained as cryopreserved stocks. To encourage use of the live resource, JAXCC members are supplied with mice free of charge, either as breeding pairs, small numbers of mutants and controls from mutant strains, or individual mice from strain panels. Additionally, the CMDR provides project management and genetic expertise to facilitate the development of cancer models by xenografts of human cancer samples into the NSG (NOD.Cg-Prkdcscid II2rgtm1Wji/Szj) mouse developed by Dr. Shultz. The CMDR advises JAXCC members who wish to develop specialized host strains tailored for particular scientific questions. Models are also developed for other research applications by combining mutant alleles to make compound mutant stocks. The CMDR and coordinates the model development process, working with the Genetic Engineering Technologies and Phenotyping Technologies resources as needed. The CMDR project manager coordinates animal care, management of biological materials, and surgical services to facilitate model development. The long-term objective is assist JAXCC members in their research by enabling the use of the full suite of genetic manipulation techniques and mouse model development.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA034196-32
Application #
9298409
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
32
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Jackson Laboratory
Department
Type
DUNS #
042140483
City
Bar Harbor
State
ME
Country
United States
Zip Code
04609
Becker, Timothy; Lee, Wan-Ping; Leone, Joseph et al. (2018) FusorSV: an algorithm for optimally combining data from multiple structural variation detection methods. Genome Biol 19:38
Wang, Qianghu; Hu, Baoli; Hu, Xin et al. (2018) Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell 33:152
Richter, Wolfgang F; Christianson, Gregory J; Frances, Nicolas et al. (2018) Hematopoietic cells as site of first-pass catabolism after subcutaneous dosing and contributors to systemic clearance of a monoclonal antibody in mice. MAbs 10:803-813
Tamura, Ryo; Yoshihara, Kosuke; Saito, Tetsuya et al. (2018) Novel therapeutic strategy for cervical cancer harboring FGFR3-TACC3 fusions. Oncogenesis 7:4
Rutherford, Sarah C; Fachel, Angela A; Li, Sheng et al. (2018) Extracellular vesicles in DLBCL provide abundant clues to aberrant transcriptional programming and genomic alterations. Blood 132:e13-e23
Barthel, Floris P; Wesseling, Pieter; Verhaak, Roel G W (2018) Reconstructing the molecular life history of gliomas. Acta Neuropathol 135:649-670
Winer, Benjamin Y; Shirvani-Dastgerdi, Elham; Bram, Yaron et al. (2018) Preclinical assessment of antiviral combination therapy in a genetically humanized mouse model for hepatitis delta virus infection. Sci Transl Med 10:
Kim, Hyunsoo; Kumar, Pooja; Menghi, Francesca et al. (2018) High-resolution deconstruction of evolution induced by chemotherapy treatments in breast cancer xenografts. Sci Rep 8:17937
Schechter, Lisa M; Creely, David P; Garner, Cherilyn D et al. (2018) Extensive Gene Amplification as a Mechanism for Piperacillin-Tazobactam Resistance in Escherichia coli. MBio 9:
Barthel, Floris P; Johnson, Kevin C; Wesseling, Pieter et al. (2018) Evolving Insights into the Molecular Neuropathology of Diffuse Gliomas in Adults. Neurol Clin 36:421-437

Showing the most recent 10 out of 1156 publications