The Cell Response and Regulation (CRR) Program is a laboratory-based, basic science program focused on deciphering cellular mechanisms that underlie cancer development and progression. Our discovery science supports HCI's unified goal of individualized oncology by providing new insights into cancer pathways and potential biomarkers. Through transdisciplinary collaborative research, CRR members contribute to further advances in cancer prevention, prognostics, diagnostics, and therapy. Research interests focus on: 1) mechanisms and regulation of cell turnover, including apoptosis in epithelium, apoptotic dysregulation in cancer, mitotic execution, and cancer stem cells;and 2) tumor microenvironment, including cell migration, adhesion, metastasis, angiogenesis, oxidative stress, and cell-matrix interactions. The CRR members employ a variety of strategies to characterize normal cell behavior and to study genes, mechanisms, and pathways involved in cancer. Members capitalize on several animal models, such as planaria, fruit flies, zebrafish, and mice, to characterize stem cell, somatic cell, and tumor cell behavior in an organismal context. Major achievements include identification of molecular pathways and tumor suppressors important in stem cells, translation of discoveries in metastasis to prognostics for breast cancer, and pre-clinical validation of a novel chemopreventive strategy for melanoma. By creating ties to disease focus groups and recruiting physician-scientists, the CRR helps move basic research findings toward clinical translation. Co-led by Douglas Grossman, MD, PhD, and Katharine Ullman, PhD, the Program has 25 members from 13 departments and three colleges. Active recruitment efforts have led to 10 new members in the last two years. Notably, almost a quarter of CRR members are physician-scientists, bringing added clinical perspective. As of December 2008, CRR members had $6.5M in peer-reviewed annual direct costs for research projects, including 13% from NCI. Since July 2003, their research has been reported in 202 publications of which 11% were intra- and 31 % were inter-programmatic collaborations. Over 95% of members have peer-reviewed funding;distinguished awards include a new HHMI investigator, a DOD Era of Hope Scholar, and an NIH New Innovator. The Cancer Center enhances the Program's goals by providing state-of-the-art facilities, shared resources, programmatic funds, and support for recruitments. In turn, the CRR adds value to HCI through guiding shared resource development and faculty recruitment, and training and mentoring future cancer researchers. Over the next five years, the CRR Program will continue to foster synergistic cancer-focused research and will build on current strengths, particularly in stem cells and in cell migration/metastasis. We will also continue to promote the high priority of bridging basic discoveries to clinical applications.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA042014-25
Application #
8661123
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
25
Fiscal Year
2014
Total Cost
$33,235
Indirect Cost
$19,956
Name
University of Utah
Department
Type
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Fleming, Aaron M; Zhu, Judy; Ding, Yun et al. (2018) Human DNA Repair Genes Possess Potential G-Quadruplex Sequences in Their Promoters and 5'-Untranslated Regions. Biochemistry 57:991-1002
Hellwig, Sabine; Nix, David A; Gligorich, Keith M et al. (2018) Automated size selection for short cell-free DNA fragments enriches for circulating tumor DNA and improves error correction during next generation sequencing. PLoS One 13:e0197333
Martin, Christopher; Leiser, Claire L; O'Neil, Brock et al. (2018) Familial Cancer Clustering in Urothelial Cancer: A Population-Based Case-Control Study. J Natl Cancer Inst 110:527-533
Mollaoglu, Gurkan; Jones, Alex; Wait, Sarah J et al. (2018) The Lineage-Defining Transcription Factors SOX2 and NKX2-1 Determine Lung Cancer Cell Fate and Shape the Tumor Immune Microenvironment. Immunity 49:764-779.e9
Sorenson, Reed S; Deshotel, Malia J; Johnson, Katrina et al. (2018) Arabidopsis mRNA decay landscape arises from specialized RNA decay substrates, decapping-mediated feedback, and redundancy. Proc Natl Acad Sci U S A 115:E1485-E1494
Polanco, Edward R; Western, Nicholas; Zangle, Thomas A (2018) Fabrication of Refractive-index-matched Devices for Biomedical Microfluidics. J Vis Exp :
Camolotto, Soledad A; Pattabiraman, Shrivatsav; Mosbruger, Timothy L et al. (2018) FoxA1 and FoxA2 drive gastric differentiation and suppress squamous identity in NKX2-1-negative lung cancer. Elife 7:
Nevala-Plagemann, Christopher; Francis, Samual; Cavalieri, Courtney et al. (2018) Benefit of adjuvant chemotherapy based on lymph node involvement for oesophageal cancer following trimodality therapy. ESMO Open 3:e000386
Li, Lian; Yang, Jiyuan; Wang, Jiawei et al. (2018) Amplification of CD20 Cross-Linking in Rituximab-Resistant B-Lymphoma Cells Enhances Apoptosis Induction by Drug-Free Macromolecular Therapeutics. ACS Nano 12:3658-3670
Wu, Yelena P; Nagelhout, Elizabeth; Aspinwall, Lisa G et al. (2018) A novel educational intervention targeting melanoma risk and prevention knowledge among children with a familial risk for melanoma. Patient Educ Couns 101:452-459

Showing the most recent 10 out of 1193 publications