netically engineered animal models for biomedical studies of human cancer for researchers at UVa and their collaborators in other academic institutions. The GTTF's mission is to support transgenic and gene targeting research endeavors, to ensure the most advanced technologies are available and to serve as a resource for these technologies. GTTF provides the following services: (1) transgenic mouse production; (2) chimeric mouse production; (3) gene targeting in embryonic stem cells; (4) transgenic embryo cryopreseration. These services are designed to expedite the process of animal model development and conservation, and maximize the use of resources. As a result of the facility's reorganizing efforts, the new director took over the position August 1, 2005. In order to expand the facility's service capabilities, the new director is in the process of establishing the following new services: (1) mouse ES cell line derivation; (2) mutant mouse assisted reproduction. The transgenic and gene targeting technology provides a powerful approach for cancer research. The use of transgenic and knockout mouse models of human cancer has proved invaluable for elucidating the functions of oncogenes and tumor suppressor genes, testing targeted therapies and imaging agents, and investigating complex oncogenic events in the whole animal.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-17
Application #
7726757
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2007-02-01
Budget End
2008-01-31
Support Year
17
Fiscal Year
2007
Total Cost
$15,800
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Knapp, Kiley A; Pires, Eusebio S; Adair, Sara J et al. (2018) Evaluation of SAS1B as a target for antibody-drug conjugate therapy in the treatment of pancreatic cancer. Oncotarget 9:8972-8984
Zhang, Xuewei; Kitatani, Kazuyuki; Toyoshima, Masafumi et al. (2018) Ceramide Nanoliposomes as a MLKL-Dependent, Necroptosis-Inducing, Chemotherapeutic Reagent in Ovarian Cancer. Mol Cancer Ther 17:50-59
Kedzierska, Katarzyna Z; Gerber, Livia; Cagnazzi, Daniele et al. (2018) SONiCS: PCR stutter noise correction in genome-scale microsatellites. Bioinformatics 34:4115-4117
Balogh, Kristen N; Templeton, Dennis J; Cross, Janet V (2018) Macrophage Migration Inhibitory Factor protects cancer cells from immunogenic cell death and impairs anti-tumor immune responses. PLoS One 13:e0197702
Cruickshanks, Nichola; Zhang, Ying; Hine, Sarah et al. (2018) Discovery and Therapeutic Exploitation of Mechanisms of Resistance to MET Inhibitors in Glioblastoma. Clin Cancer Res :
Rodriguez, Anthony B; Peske, J David; Engelhard, Victor H (2018) Identification and Characterization of Tertiary Lymphoid Structures in Murine Melanoma. Methods Mol Biol 1845:241-257
Gonzalez, Phillippe P; Kim, Jungeun; Galvao, Rui Pedro et al. (2018) p53 and NF 1 loss plays distinct but complementary roles in glioma initiation and progression. Glia 66:999-1015
Melhuish, Tiffany A; Kowalczyk, Izabela; Manukyan, Arkadi et al. (2018) Myt1 and Myt1l transcription factors limit proliferation in GBM cells by repressing YAP1 expression. Biochim Biophys Acta Gene Regul Mech 1861:983-995
Stowman, Anne M; Hickman, Alexandra W; Mauldin, Ileana S et al. (2018) Lymphoid aggregates in desmoplastic melanoma have features of tertiary lymphoid structures. Melanoma Res 28:237-245
Carlton, Anne L; Illendula, Anuradha; Gao, Yan et al. (2018) Small molecule inhibition of the CBF?/RUNX interaction decreases ovarian cancer growth and migration through alterations in genes related to epithelial-to-mesenchymal transition. Gynecol Oncol 149:350-360

Showing the most recent 10 out of 539 publications