The W.M. Keck Biomedical Mass Spectrometry Lab is dedicated to providing access to state of the art mass Spectrometry instrumentation and highly trained personnel. The facility currently has a time-of-flight mass spectrometer (ABI Voyager DE-Pro) equipped with a MALDI source (MALDI-TOF) for high accuracy mass measurement of peptides and small molecules as well as detection of intact proteins up to ~150 kDa. In addition, one ion trap and one hybrid ion trap-FTICR each equipped with microspray sources (Thermo Electron LCQ DecaXP and LTQ-FT) provide detailed information on proteins such as identification, relative quantitation, and post-translational modification discovery. In particular, the FTICR is capable of high resolution/mass accuracy at ultra-high sensitivity. For larger numbers of samples, the facility has 96-well format automated equipment such as the Genomic Solutions ProGest (sample digestion) and the Genomic Solutions ProMS (sample processing for peptide mass fingerprinting). The critical mission of the facility is to provide Cancer Center investigators with expertise in pre-experiment planning, data acquisition, and data interpretation for a wide variety of experimental questions ranging from basic science to clinical applications. This 'start to finish'guidance provides investigators with interactions critical to experimental success and is not often found at other facilities. Lab personnel also give periodic lectures to the university community to keep investigators apprized of currently available instrumentation and techniques and to keep themselves current on the types of questions Cancer Center members would like to address in their research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-20
Application #
8104151
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2010-02-01
Budget End
2011-01-31
Support Year
20
Fiscal Year
2010
Total Cost
$91,577
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Knapp, Kiley A; Pires, Eusebio S; Adair, Sara J et al. (2018) Evaluation of SAS1B as a target for antibody-drug conjugate therapy in the treatment of pancreatic cancer. Oncotarget 9:8972-8984
Kedzierska, Katarzyna Z; Gerber, Livia; Cagnazzi, Daniele et al. (2018) SONiCS: PCR stutter noise correction in genome-scale microsatellites. Bioinformatics 34:4115-4117
Zhang, Xuewei; Kitatani, Kazuyuki; Toyoshima, Masafumi et al. (2018) Ceramide Nanoliposomes as a MLKL-Dependent, Necroptosis-Inducing, Chemotherapeutic Reagent in Ovarian Cancer. Mol Cancer Ther 17:50-59
Cruickshanks, Nichola; Zhang, Ying; Hine, Sarah et al. (2018) Discovery and Therapeutic Exploitation of Mechanisms of Resistance to MET Inhibitors in Glioblastoma. Clin Cancer Res :
Balogh, Kristen N; Templeton, Dennis J; Cross, Janet V (2018) Macrophage Migration Inhibitory Factor protects cancer cells from immunogenic cell death and impairs anti-tumor immune responses. PLoS One 13:e0197702
Gonzalez, Phillippe P; Kim, Jungeun; Galvao, Rui Pedro et al. (2018) p53 and NF 1 loss plays distinct but complementary roles in glioma initiation and progression. Glia 66:999-1015
Rodriguez, Anthony B; Peske, J David; Engelhard, Victor H (2018) Identification and Characterization of Tertiary Lymphoid Structures in Murine Melanoma. Methods Mol Biol 1845:241-257
Stowman, Anne M; Hickman, Alexandra W; Mauldin, Ileana S et al. (2018) Lymphoid aggregates in desmoplastic melanoma have features of tertiary lymphoid structures. Melanoma Res 28:237-245
Melhuish, Tiffany A; Kowalczyk, Izabela; Manukyan, Arkadi et al. (2018) Myt1 and Myt1l transcription factors limit proliferation in GBM cells by repressing YAP1 expression. Biochim Biophys Acta Gene Regul Mech 1861:983-995
Kulling, Paige M; Olson, Kristine C; Olson, Thomas L et al. (2018) Calcitriol-mediated reduction in IFN-? output in T cell large granular lymphocytic leukemia requires vitamin D receptor upregulation. J Steroid Biochem Mol Biol 177:140-148

Showing the most recent 10 out of 539 publications