The immune system is both a source of malignancies and a tool for cancer therapy. The Immunology/lmmunotherapy Program (IMM) supports basic and clinical research to increase the understanding and control of (1) the immune response to cancer and (2) the ways hematopoiefic cell development and its dysregulation can be used to treat hematologic malignancies. IMM Program members approach this two-faceted goal through three scientific Themes: (1) Development and Opfimizafion of Antigen-Directed Immunotherapeutics;(2) Positive and Negative Regulation of the Quality of Anti-Tumor Immunity. (3) Control of Hematopoiesis and Hematologic Malignancies. These Themes include outstanding basic science investigations, as well as highly collaborative translational initiatives to develop clinical trials based on this research. Program Co-Leader, Victor Engelhard, PhD, is internationally recognized for his work in tumor antigen identificafion and inducfion of tumor-specific CD8 T cell responses. Program Co-leader, Craig Slingluff, MD, has made major contribufions to cancer immunotherapy through both laboratory research and investigator-inifiated clinical trials. The Program consists of 27 Full Members and 3 Associate Members from six departments in the School of Medicine. Total extramural funding for the Program exceeds $17 million, including $4 million from the National Cancer Institute (NCI). Program Members have produced 293 cancer-relevant publications, of which 21% were inter-programmatic and 19% were intra-programmafic since the last renewal. The Program supports research in progress presentations and seminars to engender new direcfions and collaborafions;Pilot funding to encourage development of promising collaborations and ideas; and an Immune Monitoring Laboratory to facilitate clinical research. Seventeen investigator-initiated clinical trials led by Program Members, including hwo ECOG trials and three additional multicenter trials, have enrolled patients across six cancer histologies and evaluated pepfide vaccines, cytokines, and antibodies. These trials test hypotheses arising from laboratory science and also bring fissue to the laboratories to invesfigate cellular processes and molecular mechanisms to explain the clinical findings. This Program provides a firm foundation for confinued advances in both understanding of the immune system and ufilizing that knowledge to improve immunotherapy and treatment of hematologic malignancies.

Public Health Relevance

The immune system can be used to treat cancer. It also can be a source of cancer. The goals of the Immunology/lmmunotherapy Program are to understand how to enhance and utilize the therapeufic uses of the immune system, and identify the ways its malignant potenfial can be eliminated.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA044579-21
Application #
8231128
Study Section
Subcommittee G - Education (NCI)
Project Start
2012-02-01
Project End
2017-01-31
Budget Start
2012-06-05
Budget End
2013-01-31
Support Year
21
Fiscal Year
2012
Total Cost
$28,732
Indirect Cost
$10,509
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Hao, Yi; Bjerke, Glen A; Pietrzak, Karolina et al. (2018) TGF? signaling limits lineage plasticity in prostate cancer. PLoS Genet 14:e1007409
Obeid, Joseph M; Kunk, Paul R; Zaydfudim, Victor M et al. (2018) Immunotherapy for hepatocellular carcinoma patients: is it ready for prime time? Cancer Immunol Immunother 67:161-174
Wallrabe, Horst; Svindrych, Zdenek; Alam, Shagufta R et al. (2018) Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM. Sci Rep 8:79
Olmez, Inan; Love, Shawn; Xiao, Aizhen et al. (2018) Targeting the mesenchymal subtype in glioblastoma and other cancers via inhibition of diacylglycerol kinase alpha. Neuro Oncol 20:192-202
Wang, T Tiffany; Yang, Jun; Zhang, Yong et al. (2018) IL-2 and IL-15 blockade by BNZ-1, an inhibitor of selective ?-chain cytokines, decreases leukemic T-cell viability. Leukemia :
Yao, Nengliang; Zhu, Xi; Dow, Alan et al. (2018) An exploratory study of networks constructed using access data from an electronic health record. J Interprof Care :1-8
Kiran, Shashi; Dar, Ashraf; Singh, Samarendra K et al. (2018) The Deubiquitinase USP46 Is Essential for Proliferation and Tumor Growth of HPV-Transformed Cancers. Mol Cell 72:823-835.e5
Conaway, Mark R; Petroni, Gina R (2018) The Impact of Early-Phase Trial Design in the Drug Development Process. Clin Cancer Res :
Szlachta, Karol; Kuscu, Cem; Tufan, Turan et al. (2018) CRISPR knockout screening identifies combinatorial drug targets in pancreatic cancer and models cellular drug response. Nat Commun 9:4275
Khalil, Shadi; Delehanty, Lorrie; Grado, Stephen et al. (2018) Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor. J Exp Med 215:661-679

Showing the most recent 10 out of 539 publications