The overall objectives of the University of Virginia (UVA) Cancer Center's Office of Clinical Research (OCR) are to provide a central clinical research infrastructure to: ? Facilitate the activation and administration of research clinical studies ? Assist Cancer Center Principal Investigators and clinicians in the screening and enrolling of patients on clinical research studies ? Monitor compliance with all regulatory aspects of clinical trials in conjunction with the Protocol Review Committee, IRB, state, and federal guidelines ? Provide a training and education program for all Cancer Center staff involved in clinical research studies ? Provide support for internal and external quality assurance audits ? Communicate the availability of clinical research studies to Cancer Center physicians, referring physicians, and the community ? Recommend, develop, implement, and maintain state-of-the-art information systems to support the workflow, data sharing, analyses, and reporting requirements of cancer clinical research studies ? Train users on the Forte Research Systems, OnCore? clinical research management system

Public Health Relevance

Rigorous clinical research that meets the highest scientific and regulatory standards requires a robust infrastructure to support the opening and management of clinical trials. That is the mission of the OCR.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-22
Application #
8566499
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
22
Fiscal Year
2013
Total Cost
$271,563
Indirect Cost
$110,837
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Manukyan, Arkadi; Kowalczyk, Izabela; Melhuish, Tiffany A et al. (2018) Analysis of transcriptional activity by the Myt1 and Myt1l transcription factors. J Cell Biochem 119:4644-4655
Engelhard, Victor H; Rodriguez, Anthony B; Mauldin, Ileana S et al. (2018) Immune Cell Infiltration and Tertiary Lymphoid Structures as Determinants of Antitumor Immunity. J Immunol 200:432-442
Martins, André L; Walavalkar, Ninad M; Anderson, Warren D et al. (2018) Universal correction of enzymatic sequence bias reveals molecular signatures of protein/DNA interactions. Nucleic Acids Res 46:e9
Michaels, Alex D; Newhook, Timothy E; Adair, Sara J et al. (2018) CD47 Blockade as an Adjuvant Immunotherapy for Resectable Pancreatic Cancer. Clin Cancer Res 24:1415-1425
Shi, Lei; Li, Kang; Guo, Yizhan et al. (2018) Modulation of NKG2D, NKp46, and Ly49C/I facilitates natural killer cell-mediated control of lung cancer. Proc Natl Acad Sci U S A 115:11808-11813
Yang, Jun; LeBlanc, Francis R; Dighe, Shubha A et al. (2018) TRAIL mediates and sustains constitutive NF-?B activation in LGL leukemia. Blood 131:2803-2815
Kulling, Paige M; Olson, Kristine C; Hamele, Cait E et al. (2018) Dysregulation of the IFN-?-STAT1 signaling pathway in a cell line model of large granular lymphocyte leukemia. PLoS One 13:e0193429
Grant, Margaret J; Loftus, Matthew S; Stoja, Aiola P et al. (2018) Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether. Proc Natl Acad Sci U S A 115:4992-4997
Knapp, Kiley A; Pires, Eusebio S; Adair, Sara J et al. (2018) Evaluation of SAS1B as a target for antibody-drug conjugate therapy in the treatment of pancreatic cancer. Oncotarget 9:8972-8984
Zhang, Xuewei; Kitatani, Kazuyuki; Toyoshima, Masafumi et al. (2018) Ceramide Nanoliposomes as a MLKL-Dependent, Necroptosis-Inducing, Chemotherapeutic Reagent in Ovarian Cancer. Mol Cancer Ther 17:50-59

Showing the most recent 10 out of 539 publications