The Cancer Cell Signaling Program (SIG) is comprised of investigators dedicated to providing fundamental knowledge of the intra- and inter-cellular signaling pathways that control tumor cell proliferation, migration, and survival and to understanding how this information can be used to improve the diagnosis, prevention, and treatment of cancer. Program members utilize this fundamental knowledge to study tumor cell responses to the microenvironment and to drug treatments, using in vitro cell culture models and in vivo genetically engineered mouse models and xenograft models of individual cancers. Studying cell signaling in the context of pre-clinical cancer models provides relevant translation of cell signaling to the practical context of therapeutic intervention. SIG is led by David Brautigan, PhD and J. Thomas Parsons, PhD both of whom have extensive experience in cell signaling research and programmatic and administrative leadership. The Program leaders catalyze advances in signaling research by organizing retreats to foster new and innovative approaches, dispense mini pilot grants to stimulate the development of new ideas and technologies with an emphasis on using Cancer Center Shared Resources, and contribute to the overall intellectual environment of the Cancer Center by participating in seminars, journal clubs, research in progress and graduate and postgraduate education. The research of the 22 members of SIG is organized around three themes: (1) understanding fundamental properties of cancer cell signaling networks; (2) identifying pathways that govern cell responses to the microenvironment; and (3) defining in vivo systems to study signaling networks and test preclinical therapeutic strategies for cancer treatment. Total extramural funding for the Program exceeds $18 million, including $2.5 million from the National Cancer Institute (NCI). Over the past five years, SIG Members have published 504 Program-relevant papers of which 33% were inter-Programmatic and 13% were intra Programmatic. The future goals of SIG are to foster discovery science focused on the complex integration of signaling networks, on how tumors respond to the microenvironment, and how tumors evolve to survive anti cancer therapies. SIG will continue to utilize the outstanding Shared Resources and promote collaboration and innovation. Finally, SIG will engage oncologists and surgeons within the program and Cancer Center to seize opportunities for translation of information on signaling networks to clinical applications.

Public Health Relevance

The Cancer Cell Signaling Program studies the regulatory networks that control communication inside cells and between cells, and the ways these become deranged in cancer. Most molecularly targeted cancer therapies exploit this knowledge, and this Program over the past decade has made discoveries that have shaped the landscape of cancer treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-24
Application #
8823554
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
2016-01-31
Budget Start
2015-02-01
Budget End
2016-01-31
Support Year
24
Fiscal Year
2015
Total Cost
$65,652
Indirect Cost
$48,220
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Knapp, Kiley A; Pires, Eusebio S; Adair, Sara J et al. (2018) Evaluation of SAS1B as a target for antibody-drug conjugate therapy in the treatment of pancreatic cancer. Oncotarget 9:8972-8984
Kedzierska, Katarzyna Z; Gerber, Livia; Cagnazzi, Daniele et al. (2018) SONiCS: PCR stutter noise correction in genome-scale microsatellites. Bioinformatics 34:4115-4117
Zhang, Xuewei; Kitatani, Kazuyuki; Toyoshima, Masafumi et al. (2018) Ceramide Nanoliposomes as a MLKL-Dependent, Necroptosis-Inducing, Chemotherapeutic Reagent in Ovarian Cancer. Mol Cancer Ther 17:50-59
Cruickshanks, Nichola; Zhang, Ying; Hine, Sarah et al. (2018) Discovery and Therapeutic Exploitation of Mechanisms of Resistance to MET Inhibitors in Glioblastoma. Clin Cancer Res :
Balogh, Kristen N; Templeton, Dennis J; Cross, Janet V (2018) Macrophage Migration Inhibitory Factor protects cancer cells from immunogenic cell death and impairs anti-tumor immune responses. PLoS One 13:e0197702
Gonzalez, Phillippe P; Kim, Jungeun; Galvao, Rui Pedro et al. (2018) p53 and NF 1 loss plays distinct but complementary roles in glioma initiation and progression. Glia 66:999-1015
Rodriguez, Anthony B; Peske, J David; Engelhard, Victor H (2018) Identification and Characterization of Tertiary Lymphoid Structures in Murine Melanoma. Methods Mol Biol 1845:241-257
Stowman, Anne M; Hickman, Alexandra W; Mauldin, Ileana S et al. (2018) Lymphoid aggregates in desmoplastic melanoma have features of tertiary lymphoid structures. Melanoma Res 28:237-245
Melhuish, Tiffany A; Kowalczyk, Izabela; Manukyan, Arkadi et al. (2018) Myt1 and Myt1l transcription factors limit proliferation in GBM cells by repressing YAP1 expression. Biochim Biophys Acta Gene Regul Mech 1861:983-995
Kulling, Paige M; Olson, Kristine C; Olson, Thomas L et al. (2018) Calcitriol-mediated reduction in IFN-? output in T cell large granular lymphocytic leukemia requires vitamin D receptor upregulation. J Steroid Biochem Mol Biol 177:140-148

Showing the most recent 10 out of 539 publications