Primary human xenografts are human cancer tissues which are xenotransplanted into immunodeficient mice. Numerous studies have demonstrated that these xenografts much more closely resemble primary human cancers at the histological and molecular level then do xenografts generated from cell lines propagated in vitro (f-3). Primary xenograft models have proven most valuable in studying tumor biology and cellular heterogeneity, as well as for evaluating the efficacy of therapeutic agents. A prime example of the utility of primary human xenografts has been In the identification and characterization of human cancer stem cells (CSCs). UMCCC investigators used these models to report the Initial identification of CSCs in cancers of the breast, pancreas, head and neck and ovaries (4-6). Subsequently, xenograft models have been utilized by other UMCCC investigators to investigate CSCs in the brain, liver, adrenal and lung cancers {9-11). In addition to identifying CSC populations In various tumor types, these models have proven invaluable in studying the pathways which regulate them and in developing CSC-based therapeutics. Indeed, agents targeting CSCs regulatory pathways including Notch, Hedgehog, HER2/Akt, Wnt and cytokine signaling are being evaluated In multiple tumor types by UMCCC investigators. These preclinical studies have already led to the development of several early stage clinical trials targeting these CSC pathways. An important component of the translational oncology research strategy involves the development and testing of molecular targeted therapeutics In these xenograft models.

Public Health Relevance

The Primary Tumor Xenograft Core will establish individual patient tumors in mice to allow the study of individual patient tumors lo best design personalized therapeutics. A broad range of tumors will be analyzed.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
4P30CA046592-28
Application #
9086279
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
28
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Harvey, Innocence; Stephenson, Erin J; Redd, JeAnna R et al. (2018) Glucocorticoid-Induced Metabolic Disturbances Are Exacerbated in Obese Male Mice. Endocrinology 159:2275-2287
Schuetze, Scott M; Bolejack, Vanessa; Thomas, Dafydd G et al. (2018) Association of Dasatinib With Progression-Free Survival Among Patients With Advanced Gastrointestinal Stromal Tumors Resistant to Imatinib. JAMA Oncol 4:814-820
Wagner, Vivian P; Martins, Manoela D; Martins, Marco A T et al. (2018) Targeting histone deacetylase and NF?B signaling as a novel therapy for Mucoepidermoid Carcinomas. Sci Rep 8:2065
Hosoya, Tomonori; D'Oliveira Albanus, Ricardo; Hensley, John et al. (2018) Global dynamics of stage-specific transcription factor binding during thymocyte development. Sci Rep 8:5605
Schofield, Heather K; Tandon, Manuj; Park, Min-Jung et al. (2018) Pancreatic HIF2? Stabilization Leads to Chronic Pancreatitis and Predisposes to Mucinous Cystic Neoplasm. Cell Mol Gastroenterol Hepatol 5:169-185.e2
Su, Wenmei; Feng, Shumei; Chen, Xiuyuan et al. (2018) Silencing of Long Noncoding RNA MIR22HG Triggers Cell Survival/Death Signaling via Oncogenes YBX1, MET, and p21 in Lung Cancer. Cancer Res 78:3207-3219
Moody, Rebecca Reed; Lo, Miao-Chia; Meagher, Jennifer L et al. (2018) Probing the interaction between the histone methyltransferase/deacetylase subunit RBBP4/7 and the transcription factor BCL11A in epigenetic complexes. J Biol Chem 293:2125-2136
Ma, Vincent T; Boonstra, Philip S; Menghrajani, Kamal et al. (2018) Treatment With JAK Inhibitors in Myelofibrosis Patients Nullifies the Prognostic Impact of Unfavorable Cytogenetics. Clin Lymphoma Myeloma Leuk 18:e201-e210
Collins, Dalis; Fry, Christopher; Moore, Bethany B et al. (2018) Phagocytosis by Fibrocytes as a Mechanism to Decrease Bacterial Burden and Increase Survival in Sepsis. Shock :
Wang, Xuexiang; Dande, Ranadheer R; Yu, Hao et al. (2018) TRPC5 Does Not Cause or Aggravate Glomerular Disease. J Am Soc Nephrol 29:409-415

Showing the most recent 10 out of 1493 publications