HEMATOLOGIC MALIGNANCIES PROGRAM (Project-265) ABSTRACT Overview and Goals: Hematologic malignancies represent some of the most aggressive forms of cancer, and in many cases, current therapeutic options are very limited. Thus, the goal of the new Hematologic Malignancies (HEME) Program, which was formally established in early 2015, is to define key biological features of leukemia and related blood cancers and translate these into improved therapeutics. HEME was formed in 2015 based on the vision of the UCCC leadership with concurrence of our EAB and leverages the enormous growth in the hematologic malignancies community at AMC over the last 5 years. The major scientific strengths in HEME focus on the epigenetic regulation of cellular processes, key molecular events occurring as normal cells transition to malignant states, metabolic processes that define tumor-specific properties, and characterizing malignant stem cells. Research Highlight: Recently members discovered that germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia opening up novel avenues for prevention and assessment of cancer predisposition risk in such patients (Nat Genet, 20151). Program Activities: To accomplish this goal, HEME co-leaders employ resources provided by the CCSG to orchestrate intra- and inter-programmatic collaborations through organization of annual retreats and periodic technology forums, and routine chaperoning of transdisciplinary collaborations. Program members utilize Shared Resources (SR) for preclinical mouse models and employ patient-derived specimens and tumor models as a means to evaluate candidate therapies. In addition, work across the consortium with CSU/FACC on spontaneous disease models in companion animals complements an extensive adult and pediatric human clinical trials portfolio at that seeks to advance multiple targeted therapies across all ages. Members: The HEME program is comprised of 24 Full and 11 Associate members with 65 grants and $1.4M NCI and $1.3M other peer-reviewed cancer research grant funding in 2015. The group of multidisciplinary investigators includes the entire spectrum of pediatric and adult blood cancer research groups across the UCCC consortium. 86% of members (30) are located in 10 clinical and basic science departments at UCD and CSU; and the remainder are at non-consortium institutions. From program inception (7/2014) the group produced 77 cancer-focused publications, of which 32% were inter- and 13% intra-programmatic. Future Directions: We expect the HEME program to expand substantially. Ongoing recruitment efforts include clinical research leadership roles in immunotherapy, pediatric BMT, myeloma, and expertise in adolescent young adult (AYA) populations. In addition, growth in immunology, pharmacology and molecular biology is expected to further strengthen our basic science efforts. For this dynamic program, we will focus on supporting interdisciplinary and translational studies, collaborative projects, training and mentoring of junior investigators, and the development of key resources required for laboratory and clinical research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA046934-32
Application #
9867679
Study Section
Subcommittee H - Clinical Groups (NCI)
Project Start
Project End
Budget Start
2020-02-01
Budget End
2021-01-31
Support Year
32
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Altieri, Lisa; Miller, Kimberly A; Huh, Jimi et al. (2018) Prevalence of sun protection behaviors in Hispanic youth residing in a high ultraviolet light environment. Pediatr Dermatol 35:e52-e54
Kwak, Jeff W; Laskowski, Jennifer; Li, Howard Y et al. (2018) Complement Activation via a C3a Receptor Pathway Alters CD4+ T Lymphocytes and Mediates Lung Cancer Progression. Cancer Res 78:143-156
Hoefert, Jaimee E; Bjerke, Glen A; Wang, Dongmei et al. (2018) The microRNA-200 family coordinately regulates cell adhesion and proliferation in hair morphogenesis. J Cell Biol 217:2185-2204
Kim, Seongsoon; Park, Donghyeon; Choi, Yonghwa et al. (2018) A Pilot Study of Biomedical Text Comprehension using an Attention-Based Deep Neural Reader: Design and Experimental Analysis. JMIR Med Inform 6:e2
Sclafani, Robert A; Hesselberth, Jay R (2018) O Cdc7 kinase where art thou? Curr Genet 64:677-680
Shearn, Colin T; Orlicky, David J; Petersen, Dennis R (2018) Dysregulation of antioxidant responses in patients diagnosed with concomitant Primary Sclerosing Cholangitis/Inflammatory Bowel Disease. Exp Mol Pathol 104:1-8
Kim, Jihye; Yoo, Minjae; Shin, Jimin et al. (2018) Systems Pharmacology-Based Approach of Connecting Disease Genes in Genome-Wide Association Studies with Traditional Chinese Medicine. Int J Genomics 2018:7697356
Riemondy, Kent A; Gillen, Austin E; White, Emily A et al. (2018) Dynamic temperature-sensitive A-to-I RNA editing in the brain of a heterothermic mammal during hibernation. RNA 24:1481-1495
Petersen, Dennis R; Orlicky, David J; Roede, James R et al. (2018) Aberrant expression of redox regulatory proteins in patients with concomitant primary Sclerosing cholangitis/inflammatory bowel disease. Exp Mol Pathol 105:32-36
Couts, Kasey L; Bemis, Judson; Turner, Jacqueline A et al. (2018) ALK Inhibitor Response in Melanomas Expressing EML4-ALK Fusions and Alternate ALK Isoforms. Mol Cancer Ther 17:222-231

Showing the most recent 10 out of 1634 publications