The Vector Core Facility (VCF) has served, and will continue to serve, as an important component of the Cancer Center Support Grant (CCSG), by providing viral and non-viral vectors, and reagents to UPCI members. The VCF functions within the framework of the UPCI as a dynamic resource that provides state-of-the-art viral and non-viral vector technology, as well as develops novel vectors. The major emphasis of the VCF has been on the utilization of retroviral and adenoviral vectors for gene transduction. However, this facility also produces adeno-associated virus and lentivirus vectors for gene delivery; and is developing expression vectors for use in both liposome and particle-mediated gene transduction. Furthermore, the VCF is characterizing and optimizing protein transduction domains (PTDs), and can generate and provide PTD fusion proteins. The role of the VCF in the UPCI will continue to be to construct and provide the required viral and non-viral vectors expressing the appropriate genes, as required by UPCI investigators, particularly those pursuing the gene therapy of cancer. In addition, the Facility provides cell lines, viruses, packaging lines, plasmids, and protocols as needed. Furthermore, the Core provides technical assistance and training to individuals in the use of viral and non-viral vectors for gene transfer.
The specific aims of the Vector Core are: l. To provide UPCI investigators with either viral or non-viral vectors, expressing the required therapeutic gene, dlat are most appropriate and efficacious for their proposed experiments 2. To develop improved viral and non-viral vectors for more efficient gene transfer, with higher and/or regulated gene expression. 3. To assist in the development of new, state-of-the-art methods for efficient gene delivery 4. To provide technical assistance and protocols for gene therapy projects, making use of viral and non-viral gene delivery systems

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA047904-17
Application #
6989540
Study Section
Subcommittee G - Education (NCI)
Project Start
2004-09-22
Project End
2009-07-31
Budget Start
2004-09-22
Budget End
2005-07-31
Support Year
17
Fiscal Year
2004
Total Cost
$56,796
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Zahorchak, Alan F; Macedo, Camila; Hamm, David E et al. (2018) High PD-L1/CD86 MFI ratio and IL-10 secretion characterize human regulatory dendritic cells generated for clinical testing in organ transplantation. Cell Immunol 323:9-18
Rogers, Meredith C; Lamens, Kristina D; Shafagati, Nazly et al. (2018) CD4+ Regulatory T Cells Exert Differential Functions during Early and Late Stages of the Immune Response to Respiratory Viruses. J Immunol 201:1253-1266
Chen, Ruochan; Zhu, Shan; Fan, Xue-Gong et al. (2018) High mobility group protein B1 controls liver cancer initiation through yes-associated protein -dependent aerobic glycolysis. Hepatology 67:1823-1841
Jing, Y; Nguyen, M M; Wang, D et al. (2018) DHX15 promotes prostate cancer progression by stimulating Siah2-mediated ubiquitination of androgen receptor. Oncogene 37:638-650
Singh, Krishna B; Ji, Xinhua; Singh, Shivendra V (2018) Therapeutic Potential of Leelamine, a Novel Inhibitor of Androgen Receptor and Castration-Resistant Prostate Cancer. Mol Cancer Ther 17:2079-2090
Butterfield, Lisa H (2018) The Society for Immunotherapy of Cancer Biomarkers Task Force recommendations review. Semin Cancer Biol 52:12-15
Gao, Ying; Tan, Jun; Jin, Jingyi et al. (2018) SIRT6 facilitates directional telomere movement upon oxidative damage. Sci Rep 8:5407
Krishnamurthy, Anuradha; Dasari, Arvind; Noonan, Anne M et al. (2018) Phase Ib Results of the Rational Combination of Selumetinib and Cyclosporin A in Advanced Solid Tumors with an Expansion Cohort in Metastatic Colorectal Cancer. Cancer Res 78:5398-5407
Santos, Patricia M; Butterfield, Lisa H (2018) Next Steps for Immune Checkpoints in Hepatocellular Carcinoma. Gastroenterology 155:1684-1686
Liu, Zuqiang; Ge, Yan; Wang, Haiyan et al. (2018) Modifying the cancer-immune set point using vaccinia virus expressing re-designed interleukin-2. Nat Commun 9:4682

Showing the most recent 10 out of 1187 publications