Cancer Proteomics Facility (CPF) The Cancer Proteomics Facility (CPF) provides UPCI investigators access to state-of-the-art techniques and expertise for the detection, quantification, and characterization of cancer-related and biologically relevant proteins for basic, translational, and clinical studies.
The Specific Aims of the CPF are to 1) provide expert guidance in the design and implementation of experiments that use modern protein analysis techniques, including statistical and bioinformatics analysis of the proteomic data; 2) collect, store, and optimally analyze proteins in a wide variety of samples including: cells, tissue, and clinically accessible fluids; 3) provide comprehensive protein identification and characterization services to UPCI investigators; 4) provide targeted quantitative protein assays to UPCI investigators; 5) perform unbiased protein profiling analyses (e.g. SILAC, ITRAQ, and Differential MS) of complex biological samples to identify cancer-related proteins; 6) provide training related to use of and access to all instrumentation and techniques used within CPF, and 7) enable investigators, through the development of a cloud based informatics platform, to use state-of-the-art data management, processing, and analysis tools for proteomic and metabolomic studies. During the past grant cycle, the UPCI and University of Pittsburgh School of Medicine mass spectrometry shared resource facilities have merged and new leadership has been hired to direct this service. Mass spectrometry-based proteomics techniques are now supported through a campus-wide Biomedical Mass Spectrometry Center that is housed on the Oakland campus and directed by Nathan Yates, PhD. This centralized shared resource provides UPCI investigators access to a wide array of high performance mass spectrometry techniques. Antibody based assays are supported by the Luminex laboratory in the Hillman Cancer Center that is directed by Anna Lokshin, PhD and specializes in commercial multiplexed bead based platforms. The CPF has assembled a broad and rapidly advancing set of techniques that allow each researcher to study cancer-related proteins with unmatched sensitivity and specificity. Together, the components of the CPF provide UPCI investigators access to new and specialized techniques for characterizing proteins in cell based animal and patient samples. As a new and growing component of many UPCI research initiatives, the CPF enables investigators to apply mass spectrometry-based, as well as Luminex bead-based, protein measurement techniques to the study of human cells, preclinical models, tumors, and other clinically accessible samples. During the current project period investigators in 9 UPCI Research Programs used the CPF.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA047904-31
Application #
9753959
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2019-08-01
Budget End
2020-07-31
Support Year
31
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15260
Yockey, Laura J; Jurado, Kellie A; Arora, Nitin et al. (2018) Type I interferons instigate fetal demise after Zika virus infection. Sci Immunol 3:
Chen, Jingci; Nagle, Alison M; Wang, Yu-Fen et al. (2018) Controlled dimerization of insulin-like growth factor-1 and insulin receptors reveals shared and distinct activities of holo and hybrid receptors. J Biol Chem 293:3700-3709
Qin, Ye; Vasilatos, Shauna N; Chen, Lin et al. (2018) Inhibition of histone lysine-specific demethylase 1 elicits breast tumor immunity and enhances antitumor efficacy of immune checkpoint blockade. Oncogene :
Steinman, Justin; Epperly, Michael; Hou, Wen et al. (2018) Improved Total-Body Irradiation Survival by Delivery of Two Radiation Mitigators that Target Distinct Cell Death Pathways. Radiat Res 189:68-83
Evdokimova, Viktoria N; Gandhi, Manoj; Nikitski, Alyaksandr V et al. (2018) Nuclear myosin/actin-motored contact between homologous chromosomes is initiated by ATM kinase and homology-directed repair proteins at double-strand DNA breaks to suppress chromosome rearrangements. Oncotarget 9:13612-13622
Bissel, Stephanie J; Gurnsey, Kate; Jedema, Hank P et al. (2018) Aged Chinese-origin rhesus macaques infected with SIV develop marked viremia in absence of clinical disease, inflammation or cognitive impairment. Retrovirology 15:17
Knickelbein, Kyle; Tong, Jingshan; Chen, Dongshi et al. (2018) Restoring PUMA induction overcomes KRAS-mediated resistance to anti-EGFR antibodies in colorectal cancer. Oncogene 37:4599-4610
Diaz-Perez, Julio A; Killeen, Meaghan E; Yang, Yin et al. (2018) Extracellular ATP and IL-23 Form a Local Inflammatory Circuit Leading to the Development of a Neutrophil-Dependent Psoriasiform Dermatitis. J Invest Dermatol 138:2595-2605
Ancevski Hunter, Katerina; Socinski, Mark A; Villaruz, Liza C (2018) PD-L1 Testing in Guiding Patient Selection for PD-1/PD-L1 Inhibitor Therapy in Lung Cancer. Mol Diagn Ther 22:1-10
Luu, Thehang; Kim, Kyu-Pyo; Blanchard, Suzette et al. (2018) Phase IB trial of ixabepilone and vorinostat in metastatic breast cancer. Breast Cancer Res Treat 167:469-478

Showing the most recent 10 out of 1187 publications