The Cancer Pathology Facility has two primary goals. The first goal is to provide high quality, well documented samples of human tissues to investigators of the Oregon Cancer Center for use in molecular and immunohistochemical studies. The samples will be obtained from surgical re-section specimens and autopsies at hospitals affiliated with the Cancer Center, and will consist of frozen tissue, paraffin-embedded tissue, or purified DNA. The nature and quality of all collected tissues will be evaluated by the Core Director (a practicing surgical pathologist) prior to delivery to interested research. Related clincopathologic data will also be made available to researchers in a manner that guarantees patient confidentiality. The second goal of the Core Facility is to provide to Cancer Center investigators a full range of histology services for the study of human tissues and tissues from research animals. These services will include paraffin-embedding and sectioning, cryostat sectioning, histochemical staining, immunostaining, and in-situ hybridization. In addition, tissue microdissection with a laser capture microscope will be performed on request. Through these services, the Core Facility will serve as an important resource for basic and translational research activities in the Oregon Cancer Center.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA069533-04
Application #
6401788
Study Section
Subcommittee E - Prevention &Control (NCI)
Project Start
1997-08-01
Project End
2005-05-31
Budget Start
Budget End
Support Year
4
Fiscal Year
2000
Total Cost
Indirect Cost
Name
Oregon Health and Science University
Department
Type
DUNS #
009584210
City
Portland
State
OR
Country
United States
Zip Code
97239
Sorace, Anna G; Partridge, Savannah C; Li, Xia et al. (2018) Distinguishing benign and malignant breast tumors: preliminary comparison of kinetic modeling approaches using multi-institutional dynamic contrast-enhanced MRI data from the International Breast MR Consortium 6883 trial. J Med Imaging (Bellingham) 5:011019
Medler, Terry R; Murugan, Dhaarini; Horton, Wesley et al. (2018) Complement C5a Fosters Squamous Carcinogenesis and Limits T Cell Response to Chemotherapy. Cancer Cell 34:561-578.e6
Kelley, Katherine A; Wieghard, Nicole; Chin, Yuki et al. (2018) MiR-486-5p Downregulation Marks an Early Event in Colorectal Carcinogenesis. Dis Colon Rectum 61:1290-1296
Davare, Monika A; Henderson, Jacob J; Agarwal, Anupriya et al. (2018) Rare but Recurrent ROS1 Fusions Resulting From Chromosome 6q22 Microdeletions are Targetable Oncogenes in Glioma. Clin Cancer Res 24:6471-6482
Kurtz, Stephen E; Eide, Christopher A; Kaempf, Andy et al. (2018) Dual inhibition of JAK1/2 kinases and BCL2: a promising therapeutic strategy for acute myeloid leukemia. Leukemia 32:2025-2028
Sehrawat, Archana; Gao, Lina; Wang, Yuliang et al. (2018) LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A 115:E4179-E4188
Watson, Spencer S; Dane, Mark; Chin, Koei et al. (2018) Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes. Cell Syst 6:329-342.e6
Li, Bingbing X; Chen, Jingjin; Chao, Bo et al. (2018) Anticancer Pyrroloquinazoline LBL1 Targets Nuclear Lamins. ACS Chem Biol 13:1380-1387
Hulett, Tyler W; Jensen, Shawn M; Wilmarth, Phillip A et al. (2018) Coordinated responses to individual tumor antigens by IgG antibody and CD8+ T cells following cancer vaccination. J Immunother Cancer 6:27
Vranka, Janice A; Staverosky, Julia A; Reddy, Ashok P et al. (2018) Biomechanical Rigidity and Quantitative Proteomics Analysis of Segmental Regions of the Trabecular Meshwork at Physiologic and Elevated Pressures. Invest Ophthalmol Vis Sci 59:246-259

Showing the most recent 10 out of 277 publications