The mission of the Genome Engineering Shared Resource (GESR) is to provide state-of-the-art services in precision genome engineering of mammalian cell lines to Masonic Cancer Center (MCC) researchers. Specifically, the GESR is capable of genetically engineering human cell lines tailored to each principal investigator's (PI's) individual specifications. These services include, but are not limited to 1) single guide RNA (sgRNA) design; 2) sgRNA validation; 3) sgRNA expression vector construction; 4) design of CRISPR (Clustered Regularly Interspersed Palindromic Repeats)-associated 9 (Cas9) protein expression vector reagents; 5) simple, single-locus knockouts for non-essential genes; 6) construction of conditionally null alleles for essential genes; 7) construction of single-amino-acid knock-in mutations; 8) construction of single- nucleotide knock-ins; 9) construction of multi-allelic knockout cell lines; and 10) in collaboration with the Mouse Genetics Laboratory (MGL) Shared Resource, construction of RNA- and protein-based CRISPR/Cas9 reagents for the generation of transgenic mice. These services are essential to the mission of the MCC because genetic alteration of human cancer cell lines allows PIs the ability to design mechanistic and therapeutic experiments related to the characterization and investigation of specific cancers. Moreover, although the demand for genetically modified human cell lines is high, the steps involved in the process of genome editing are still technically challenging and time consuming and demand resources and a level of expertise not found in most clinical laboratories. The GESR is capable of providing these services at a very cost-effective price (well below most commercial sources) and can usually generate the requisite reagent or cell line as quickly (or more quickly) than most commercial enterprises. The GESR is co-led by Drs. Eric A. Hendrickson and Branden S. Moriarity and coordinated by Brian Ruis with support from 2 laboratory personnel. The GESR has been in operation since October 2015.
Showing the most recent 10 out of 1013 publications