The Preclinical Therapeutics Core (PCTC) facility generates tumor-bearing animals and conducts preclinical oncology trials for UCSF Comprehensive Cancer Center investigators. Offering a variety of xenograft-based cancer models, the core provides services that include consultation regarding experimental design, tumor cell growth in culture and generation of tumors in mice, administration of experimental agents, monitoring of tumor burden and response to therapy, and interpretation of study results. The PCTC maintains a cryorepository of commonly used human cancer cell lines derived from multiple tumor types along with data regarding their in vivo growth characteristics, and a user-accessible data base of genetically-engineered mouse models of human cancer maintained within the UCSF CCC, in order to foster collaboration between labs actively utilizing these models, and investigators interested in undertaking pre-clinical trials thereon. The PCTC is also a resource of expertise in small animal survival surgery, and is available to provide training in these techniques on a recharge basis. Although the core primarily functions to test experimental anti-cancer agents in vivo, it also provides animal models of human cancer for use in novel diagnostic, tumor, imaging, and basic mechanistic research. The core oversees, maintains and provides as a service a number of small animal imaging technologies housed within the barrier facility. The availability of centralized cell and animal resources, together with personnel with expertise in conducting preclinical studies, ensures appropriate experimental design and reproducibility, compliance with local and federal regulatory guidelines for tumorbearing animals, and maximum resource utilization through coordinated animal purchasing and housing.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA082103-11
Application #
7886678
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
11
Fiscal Year
2009
Total Cost
$161,222
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
An, Zhenyi; Aksoy, Ozlem; Zheng, Tina et al. (2018) Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 37:1561-1575
Behr, Spencer C; Villanueva-Meyer, Javier E; Li, Yan et al. (2018) Targeting iron metabolism in high-grade glioma with 68Ga-citrate PET/MR. JCI Insight 3:
Rubenstein, James L; Geng, Huimin; Fraser, Eleanor J et al. (2018) Phase 1 investigation of lenalidomide/rituximab plus outcomes of lenalidomide maintenance in relapsed CNS lymphoma. Blood Adv 2:1595-1607
An, Zhenyi; Knobbe-Thomsen, Christiane B; Wan, Xiaohua et al. (2018) EGFR Cooperates with EGFRvIII to Recruit Macrophages in Glioblastoma. Cancer Res 78:6785-6794
Olshen, Adam; Wolf, Denise; Jones, Ella F et al. (2018) Features of MRI stromal enhancement with neoadjuvant chemotherapy: a subgroup analysis of the ACRIN 6657/I-SPY TRIAL. J Med Imaging (Bellingham) 5:011014
Li, Megan; Kroetz, Deanna L (2018) Bevacizumab-induced hypertension: Clinical presentation and molecular understanding. Pharmacol Ther 182:152-160
Brunner, Katja; John, Constance M; Phillips, Nancy J et al. (2018) Novel Campylobacter concisus lipooligosaccharide is a determinant of inflammatory potential and virulence. J Lipid Res 59:1893-1905
Felix, Janine F; Joubert, Bonnie R; Baccarelli, Andrea A et al. (2018) Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium. Int J Epidemiol 47:22-23u
Cobler, Lara; Zhang, Hui; Suri, Poojan et al. (2018) xCT inhibition sensitizes tumors to ?-radiation via glutathione reduction. Oncotarget 9:32280-32297
Li, Megan; Mulkey, Flora; Jiang, Chen et al. (2018) Identification of a Genomic Region between SLC29A1 and HSP90AB1 Associated with Risk of Bevacizumab-Induced Hypertension: CALGB 80405 (Alliance). Clin Cancer Res 24:4734-4744

Showing the most recent 10 out of 192 publications