The Hereditary Cancer Core provides Siteman Cancer Center members with expertise and support services to address and overcome barriers to cancer genetics research. Cancer genetics research is often difficult because of the general lack of participation from families with a history of cancer and fear of genetic research, inadequate clinical data for high-risk families, and difficulties in the recruitment of ethnically diverse populations. The Hereditary Cancer Core is organized to provide a broad range of services: . Project Management and Coordination of Study Participant Recruitment . Liaison with the Washington University School of Medicine (WUSM) Human Studies Committee . Design and Implementation of Cancer Genetics Research . Clinical Risk Assessment and Genetic Counseling . Medical Record Collection Service In addition, the core has recently launched a project referred to as the Cancer Free Controls Initiative, a St. Louis community based project to collect 2,000 blood samples with linked health and family history information from individuals 65 years of age and older who have no history of cancer. DNA and serum samples will be used in cancer case-control studies. The core is responsible for participant recruitment, specimen and data collection, and database management. Mark Watson, Director of the Tissue Procurement Core, processes the samples for genetic and protein studies. Samples will be made available to SCC investigators with approved cancer research protocols.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA091842-07
Application #
7497941
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2007-07-01
Budget End
2008-06-30
Support Year
7
Fiscal Year
2007
Total Cost
$171,645
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Betleja, Ewelina; Nanjundappa, Rashmi; Cheng, Tao et al. (2018) A novel Cep120-dependent mechanism inhibits centriole maturation in quiescent cells. Elife 7:
Chen, Li-Shiun; Horton, Amy; Bierut, Laura (2018) Pathways to precision medicine in smoking cessation treatments. Neurosci Lett 669:83-92
Celik, Hamza; Koh, Won Kyun; Kramer, Ashley C et al. (2018) JARID2 Functions as a Tumor Suppressor in Myeloid Neoplasms by Repressing Self-Renewal in Hematopoietic Progenitor Cells. Cancer Cell 34:741-756.e8
Olfson, Emily; Bloom, Joseph; Bertelsen, Sarah et al. (2018) CYP2A6 metabolism in the development of smoking behaviors in young adults. Addict Biol 23:437-447
Hirbe, Angela C; Jennings, Jack; Saad, Nael et al. (2018) A Phase II Study of Tumor Ablation in Patients with Metastatic Sarcoma Stable on Chemotherapy. Oncologist 23:760-e76
Jenkins, Wiley D; Gilbert, David; Chen, Li-Shiun et al. (2018) Finding paths with the greatest chance of success: enabling and focusing lung cancer screening and cessation in resource-constrained areas. Transl Lung Cancer Res 7:S261-S264
Kabir, Ashraf Ul; Lee, Tae-Jin; Pan, Hua et al. (2018) Requisite endothelial reactivation and effective siRNA nanoparticle targeting of Etv2/Er71 in tumor angiogenesis. JCI Insight 3:
Smith, Lee; Ae Lee, Jung; Mun, Junbae et al. (2018) Levels and patterns of self-reported and objectively-measured free-living physical activity among prostate cancer survivors: A prospective cohort study. Cancer :
Burclaff, Joseph; Mills, Jason C (2018) Plasticity of differentiated cells in wound repair and tumorigenesis, part II: skin and intestine. Dis Model Mech 11:
Cherian, Mathew A; Olson, Sydney; Sundaramoorthi, Hemalatha et al. (2018) An activating mutation of interferon regulatory factor 4 (IRF4) in adult T-cell leukemia. J Biol Chem 293:6844-6858

Showing the most recent 10 out of 1244 publications