Eleven years ago, a decision was made to promote tumor immunology research at our institution by including a tumor immunology program as an integral component of a newly forming NCI accredited Comprehensive Cancer Center. This strategy has yielded significant success and today the number of laboratories at Washington University performing tumor immunology related research has risen significantly. More importantly, the last six years have seen an even more significant rise in translational and/or clinical tumor immunology research. Based on the advances in our understanding of immune system-tumor interactions that have occurred over the last 6 years and the research strengths/interests of our program members, the efforts ofthe Tumor Immunology Program are now focused into four thematic areas: (1) the molecular basis of immune recognition of cancer, (2) mechanisms underiying development of host protective, immune effector functions (3) pro-tumorigenic inflammation and immunosuppression and (4) tumor immunotherapy. The long-range goal ofthe Immunology Program is to encourage development of cutting-edge tumor immunology research and facilitate its direct translation into novel diagnostic or immunotherapeutic protocols. Toward these ends, the following four immediate goals will be pursued: (1) continued development of new experimental tumor models using transgenic and gene-targeted mice that more closely recapitulate clinical aspects of human cancer, (2) definition of the structures/antigens of tumors that are the targets of innate and adaptive immune recognition and exploration of mechanisms to enhance the sensitivity/specificity ofthe recognition process, (3) elucidation ofthe roles of innate and adaptive immune response components in either promoting or suppressing anti-tumor immune responses, and (4) explore new avenues to increase the number of inter-departmental and/or collaborative tumor immunology research projects. The program will achieve these goals by continuing to sponsor a number of interactive scientific forums for its members and their research teams and by employing the resources of the Siteman Cancer Center and its cores to encourage the active and interactive participation of both its basic and clinically oriented members. The Tumor Immunology Research Program currently consists of 28 members from 5 departments and 1 school. It has $2,832,508 in NCI funding and $9,939,175 in other peer reviewed support. This is a highly productive program;publishing 451 publications in the last funding period (2004- 2009) of which 11% were intra-programmatic and 2 1% were inter-programmatic.

Public Health Relevance

Before we can use the power and specificity ofthe immune system against cancer we need to learn more about how immunity controls or promotes cancer and how the presence of a tumor affects the function of the immune system. We also need to determine what types of immunotherapy are best suited for particular types of cancer. This program will use the profound immunological and clinical expertise of our members to translate basic discoveries in tumor immunology to more effective cancer diagnostics and/or therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA091842-13
Application #
8705870
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
13
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Mostafa, Heba H; Thompson, Thornton W; Konen, Adam J et al. (2018) Herpes Simplex Virus 1 Mutant with Point Mutations in UL39 Is Impaired for Acute Viral Replication in Mice, Establishment of Latency, and Explant-Induced Reactivation. J Virol 92:
Choi, Jaebok; Cooper, Matthew L; Staser, Karl et al. (2018) Baricitinib-induced blockade of interferon gamma receptor and interleukin-6 receptor for the prevention and treatment of graft-versus-host disease. Leukemia 32:2483-2494
Bartlett, Nancy L; Costello, Brian A; LaPlant, Betsy R et al. (2018) Single-agent ibrutinib in relapsed or refractory follicular lymphoma: a phase 2 consortium trial. Blood 131:182-190
Kalas, Vasilios; Hibbing, Michael E; Maddirala, Amarendar Reddy et al. (2018) Structure-based discovery of glycomimetic FmlH ligands as inhibitors of bacterial adhesion during urinary tract infection. Proc Natl Acad Sci U S A 115:E2819-E2828
Yokoyama, Christine C; Baldridge, Megan T; Leung, Daisy W et al. (2018) LysMD3 is a type II membrane protein without an in vivo role in the response to a range of pathogens. J Biol Chem 293:6022-6038
Miller, Jessica; Wang, Steven T; Orukari, Inema et al. (2018) Perfusion-based fluorescence imaging method delineates diverse organs and identifies multifocal tumors using generic near-infrared molecular probes. J Biophotonics 11:e201700232
Song, Wilbur M; Joshita, Satoru; Zhou, Yingyue et al. (2018) Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. J Exp Med 215:745-760
Gauvain, Karen; Ponisio, Maria Rosana; Barone, Amy et al. (2018) 18F-FDOPA PET/MRI for monitoring early response to bevacizumab in children with recurrent brain tumors. Neurooncol Pract 5:28-36
Cruchaga, Carlos; Del-Aguila, Jorge L; Saef, Benjamin et al. (2018) Polygenic risk score of sporadic late-onset Alzheimer's disease reveals a shared architecture with the familial and early-onset forms. Alzheimers Dement 14:205-214
Willet, Spencer G; Lewis, Mark A; Miao, Zhi-Feng et al. (2018) Regenerative proliferation of differentiated cells by mTORC1-dependent paligenosis. EMBO J 37:

Showing the most recent 10 out of 1244 publications