Located in the heart of the University's medical complex, the Small Animal Cancer Imaging Core provides intellectual and physical resources devoted to magnetic resonance imaging (MRI), positron emission tomography, (PET), and optical tomography (OT) directed toward small laboratory animals such as hamsters, rats and mice. MRI resources include a high-field 11.7 tesla multinuclear scanner, one of only a few worldwide, and three 4.7 tesia multinuclear scanners. Recent upgrades of electronics consoles, gradient coils, and gradient power supplies, have restored these instruments to state-of-the-art quality. The PET/CT Component is centered on two microPET scanners from Siemens Medical, including a newly acquired, state-of-the-art Inveon microPET-CT instrument. Two cyclotrons and an associated radiochemistry laboratory are connected to the PET facility via a pneumatic tube system and a small-bore gas line for transport of liquid (contained in syringes) and gaseous radiopharmaceuticals. Both MRI and PET scanners offer sensitivity and resolution optimized for small-animal research. Additional resources for support of small-animal imaging include housing, physiologic support and monitoring equipment, surgical procedure rooms, wet chemistry laboratories, and data analysis and archival systems. The Core provides Siteman Cancer Center members with the latest in small-animal MRI, PET, and OT capabilities. Highly skilled staff members are available to assist, advise, and collaborate on projects of interest to Siteman members. For the last five years, the Small Animal Cancer Imaging Core has been supported primarily through the National Cancer Institute (NCI) Small Animal Imaging Resource Program (SAIRP). Washington University Small Animal Imaging Resource (WUSAIR) was one of the original five SAIRP centers, established in 1999, and received ~$3 million in total support from 2004 to 2009.

Public Health Relevance

MRI and PET are widely employed in the clinic;thus, new MR and PET imaging technology developed in the Small Animal Imaging Core can be seamlessly and immediately translated to the clinic for the direct benefit of cancer patients. In addition, the Core provides imaging platforms for pre-clinical development and assessment of new therapies for cancer treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA091842-13
Application #
8705881
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
13
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Mostafa, Heba H; Thompson, Thornton W; Konen, Adam J et al. (2018) Herpes Simplex Virus 1 Mutant with Point Mutations in UL39 Is Impaired for Acute Viral Replication in Mice, Establishment of Latency, and Explant-Induced Reactivation. J Virol 92:
Choi, Jaebok; Cooper, Matthew L; Staser, Karl et al. (2018) Baricitinib-induced blockade of interferon gamma receptor and interleukin-6 receptor for the prevention and treatment of graft-versus-host disease. Leukemia 32:2483-2494
Bartlett, Nancy L; Costello, Brian A; LaPlant, Betsy R et al. (2018) Single-agent ibrutinib in relapsed or refractory follicular lymphoma: a phase 2 consortium trial. Blood 131:182-190
Kalas, Vasilios; Hibbing, Michael E; Maddirala, Amarendar Reddy et al. (2018) Structure-based discovery of glycomimetic FmlH ligands as inhibitors of bacterial adhesion during urinary tract infection. Proc Natl Acad Sci U S A 115:E2819-E2828
Yokoyama, Christine C; Baldridge, Megan T; Leung, Daisy W et al. (2018) LysMD3 is a type II membrane protein without an in vivo role in the response to a range of pathogens. J Biol Chem 293:6022-6038
Miller, Jessica; Wang, Steven T; Orukari, Inema et al. (2018) Perfusion-based fluorescence imaging method delineates diverse organs and identifies multifocal tumors using generic near-infrared molecular probes. J Biophotonics 11:e201700232
Song, Wilbur M; Joshita, Satoru; Zhou, Yingyue et al. (2018) Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. J Exp Med 215:745-760
Gauvain, Karen; Ponisio, Maria Rosana; Barone, Amy et al. (2018) 18F-FDOPA PET/MRI for monitoring early response to bevacizumab in children with recurrent brain tumors. Neurooncol Pract 5:28-36
Cruchaga, Carlos; Del-Aguila, Jorge L; Saef, Benjamin et al. (2018) Polygenic risk score of sporadic late-onset Alzheimer's disease reveals a shared architecture with the familial and early-onset forms. Alzheimers Dement 14:205-214
Willet, Spencer G; Lewis, Mark A; Miao, Zhi-Feng et al. (2018) Regenerative proliferation of differentiated cells by mTORC1-dependent paligenosis. EMBO J 37:

Showing the most recent 10 out of 1244 publications