The Flow Cytometry Shared Resource (FCSR) is a cutting-edge facility that provides cell analysis and cell sorting services for SCI members. The mission of the shared resource is to promote scientific research and training with the highest level of quality and rigor and to bring new developments in cytometric instrumentation, techniques and analysis into biological use and routine availability. The FCSR enhances research productivity and effectiveness by promoting high-content data acquisition, ensuring the highest data quality and consistency, carrying out efficient cell sorting, providing reliable data management, educating and training researchers and consulting in experiment design and evaluation. Major applications of flow cytometry services include: DNA content analysis for tumor biology, immunological characterization of lymphoma cells, stem and immune cell sorting, isolation of key cell population in tumors and definition of cell signaling cascades for tumor classification. The FCSR achieves its twofold mission by providing investigators efficient and cost-effective access to equipment, expertise and cutting-edge techniques for their cell analysis and sorting needs, as well as leading or supporting the development of new flow technologies and applications. The operating budget of the Shared Resource is $1.4 M. Marty Bigos is the Director of the Flow Cytometry Shared Resource and Garry Nolan, PhD, is the Faculty Advisor. Future plans include expanding the new Mass Cytometry services.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA124435-10
Application #
9308884
Study Section
Special Emphasis Panel (ZCA1-RTRB-0)
Project Start
Project End
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
10
Fiscal Year
2017
Total Cost
$94,162
Indirect Cost
$34,571
Name
Stanford University
Department
Type
Domestic Higher Education
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Nair, Viswam S; Sundaram, Vandana; Desai, Manisha et al. (2018) Accuracy of Models to Identify Lung Nodule Cancer Risk in the National Lung Screening Trial. Am J Respir Crit Care Med 197:1220-1223
She, Richard; Jarosz, Daniel F (2018) Mapping Causal Variants with Single-Nucleotide Resolution Reveals Biochemical Drivers of Phenotypic Change. Cell 172:478-490.e15
Champion, Magali; Brennan, Kevin; Croonenborghs, Tom et al. (2018) Module Analysis Captures Pancancer Genetically and Epigenetically Deregulated Cancer Driver Genes for Smoking and Antiviral Response. EBioMedicine 27:156-166
Zhou, Mu; Leung, Ann; Echegaray, Sebastian et al. (2018) Non-Small Cell Lung Cancer Radiogenomics Map Identifies Relationships between Molecular and Imaging Phenotypes with Prognostic Implications. Radiology 286:307-315
Pollom, Erqi L; Fujimoto, Dylann K; Han, Summer S et al. (2018) Newly diagnosed glioblastoma: adverse socioeconomic factors correlate with delay in radiotherapy initiation and worse overall survival. J Radiat Res 59:i11-i18
Nørgaard, Caroline Holm; Jakobsen, Lasse Hjort; Gentles, Andrew J et al. (2018) Subtype assignment of CLL based on B-cell subset associated gene signatures from normal bone marrow - A proof of concept study. PLoS One 13:e0193249
Im, Hogune; Rao, Varsha; Sridhar, Kunju et al. (2018) Distinct transcriptomic and exomic abnormalities within myelodysplastic syndrome marrow cells. Leuk Lymphoma 59:2952-2962
Huang, Min; Zhu, Li; Garcia, Jacqueline S et al. (2018) Brd4 regulates the expression of essential autophagy genes and Keap1 in AML cells. Oncotarget 9:11665-11676
Chiou, Shin-Heng; Dorsch, Madeleine; Kusch, Eva et al. (2018) Hmga2 is dispensable for pancreatic cancer development, metastasis, and therapy resistance. Sci Rep 8:14008
Breslow, David K; Hoogendoorn, Sascha; Kopp, Adam R et al. (2018) A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nat Genet 50:460-471

Showing the most recent 10 out of 322 publications