The Genomic Profiling Shared Resource (GPSR) of the Dan L. Duncan Cancer Center (DLDCC) at Baylor College of Medicine (BCM) utilizes the expertise available at both BCM and Texas Children's Hospital (TCH) to offer a comprehensive suite of services using cutting edge genomic and transcriptomic technologies to DLDCC members. The GPSR core combines cutting edge technologies to provide state-of-the-art quality microarray-based and next generation sequencing-based services and analyses for both transcriptional and genomic profiling. This resource provides assistance to DLDCC researchers in utilizing microarray technology, next generation sequencing technology, good experimental design, and data management and data analysis resources. We will begin offering next generation sequencing technology (lllumina Genome Analyzer II) to DLDCC members in October 2009. Many DLDCC researchers are interested in utilizing state-of-the-art technologies such as microarray expression profiling to attempt to dissect the causes and effects associated with cancer. For individual laboratories, the costs and levels of expertise associated with establishing a microarray capability is prohibitive (initial equipment purchases can cost between $250,000 and $750,000) requiring a facility like the GPSR. Within the past decade we have witnessed significant advancements in research that are directly associated with the output of the genome sequencing endeavor. The results of these achievements provide hope to investigators researching complex disease including cancer. In cancer, complex barriers to the identification of cause include not only chromosomal abnormalities (gross and submicroscopic) but alterations in one or several genes having aberrant expression profiles or even hundreds to thousands of genes with perturbed expression. This can result in a mishmash of cancer gene expression profiles that is difficult to sort through presenting a challenge to researchers attempting to elucidate the cause and effect of cancer. The GPSR works to provide DLDCC members a solid base of expertise to tap in order to make sense of the large data sets generated with this technology.

Public Health Relevance

Cancer is a complex disease and researchers who endeavor to dissect the causes associated with cancer are now able to delve deeper than ever before utilizing tools that aid in the analyses of genomic and transcriptomic changes associated with a cancer state. This shared resource provides an avenue for these researchers to access both these cutting edge technologies and the expertise necessary to successfully use them.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA125123-05
Application #
8296123
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
5
Fiscal Year
2011
Total Cost
$150,145
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Gibbons, Don L; Creighton, Chad J (2018) Pan-cancer survey of epithelial-mesenchymal transition markers across the Cancer Genome Atlas. Dev Dyn 247:555-564
Matsunuma, Ryoichi; Chan, Doug W; Kim, Beom-Jun et al. (2018) DPYSL3 modulates mitosis, migration, and epithelial-to-mesenchymal transition in claudin-low breast cancer. Proc Natl Acad Sci U S A 115:E11978-E11987
McClard, Cynthia K; Kochukov, Mikhail Y; Herman, Isabella et al. (2018) POU6f1 Mediates Neuropeptide-Dependent Plasticity in the Adult Brain. J Neurosci 38:1443-1461
Hogstad, Brandon; Berres, Marie-Luise; Chakraborty, Rikhia et al. (2018) RAF/MEK/extracellular signal-related kinase pathway suppresses dendritic cell migration and traps dendritic cells in Langerhans cell histiocytosis lesions. J Exp Med 215:319-336
Amirian, E Susan; Ostrom, Quinn T; Armstrong, Georgina N et al. (2018) Aspirin, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), and Glioma Risk: Original Data from the Glioma International Case-Control Study and a Meta-Analysis. Cancer Epidemiol Biomarkers Prev :
Mishra, Prachi; Tang, Wei; Putluri, Vasanta et al. (2018) ADHFE1 is a breast cancer oncogene and induces metabolic reprogramming. J Clin Invest 128:323-340
Piyarathna, Danthasinghe Waduge Badrajee; Rajendiran, Thekkelnaycke M; Putluri, Vasanta et al. (2018) Distinct Lipidomic Landscapes Associated with Clinical Stages of Urothelial Cancer of the Bladder. Eur Urol Focus 4:907-915
Criglar, Jeanette M; Anish, Ramakrishnan; Hu, Liya et al. (2018) Phosphorylation cascade regulates the formation and maturation of rotaviral replication factories. Proc Natl Acad Sci U S A 115:E12015-E12023
Rimawi, Mothaffar F; De Angelis, Carmine; Contreras, Alejandro et al. (2018) Low PTEN levels and PIK3CA mutations predict resistance to neoadjuvant lapatinib and trastuzumab without chemotherapy in patients with HER2 over-expressing breast cancer. Breast Cancer Res Treat 167:731-740
Ostrom, Quinn T; Kinnersley, Ben; Armstrong, Georgina et al. (2018) Age-specific genome-wide association study in glioblastoma identifies increased proportion of 'lower grade glioma'-like features associated with younger age. Int J Cancer 143:2359-2366

Showing the most recent 10 out of 991 publications