The Nuclear Receptor Program is a network of 20 NIH funded basic scientists focused on understanding the contribution of nuclear receptor transcription factor and chromatic modifying coregulator function to cancer development. Members have a total of $14,612,144 in peer-reviewed research support, $4,167,979 of which is from NCI and the remainder from other NIH institutes, the Department of Defense, and cancer foundation funds. Members of the Program have a strong record of both intraprogramatic collaboration and interprogramatic interactions with both basic and clinical programs throughout the cancer center. During the last three years, members published 202 peer reviewed manuscripts of which 39% were the result of intraprogrammatic interactions and 34% from interrogrammatic publications. A major goal to identify novel therapeutic targets among members of the nuclear receptor superfamily and nuclear receptor interacting coregulator proteins for prevention of and therapeutic intervention in cancer. To achieve this goal, we have adopted an integrative approach with three central components: 1) nuclear receptor and coregulator discovery and analysis of their mechanisms of regulation of cellular homeostasis, 2) preclinical assessment of their roles in cancer development using genetically manipulated mouse model systems, and 3) A translational component involving interaction with clinical programs to rapidly transfer new information into receptor profiling and assessment of therapeutic potential in human cancers. Major accomplishments include elucidation of a breast cancer cell selective posttranslational code that is responsible for overexpression of the pi60 coactivator I breast cancer cells, SRC-3 in breast cancer cells;identification of a critical role of coactivators SRC-1 and SRC-3 in breast and prostate cancer metastases;discovery of the orphan nuclear receptors, NR4A1 and NR4A3 as novel tumor suppressors of acute myeloid leukemia and discovery of their widespread gene silencing in human AML patients regardless of genetic heterogeneity;and discovery of the orphan COUP-TFII as a potent driver of epithelial tumor associated angiogenesis and metastasis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA125123-05
Application #
8296132
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
5
Fiscal Year
2011
Total Cost
$13,531
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
De Maio, Antonia; Yalamanchili, Hari Krishna; Adamski, Carolyn J et al. (2018) RBM17 Interacts with U2SURP and CHERP to Regulate Expression and Splicing of RNA-Processing Proteins. Cell Rep 25:726-736.e7
Singh, Sunita; Jangid, Rahul K; Crowder, Alyssa et al. (2018) Foxi3 transcription factor activity is mediated by a C-terminal transactivation domain and regulated by the Protein Phosphatase 2A (PP2A) complex. Sci Rep 8:17249
Lulla, Premal D; Hill, LaQuisa C; Ramos, Carlos A et al. (2018) The use of chimeric antigen receptor T cells in patients with non-Hodgkin lymphoma. Clin Adv Hematol Oncol 16:375-386
Reineke, Lucas C; Cheema, Shebna A; Dubrulle, Julien et al. (2018) Chronic starvation induces noncanonical pro-death stress granules. J Cell Sci 131:
Bayrer, James R; Wang, Hongtao; Nattiv, Roy et al. (2018) LRH-1 mitigates intestinal inflammatory disease by maintaining epithelial homeostasis and cell survival. Nat Commun 9:4055
Charendoff, ChloƩ I; Bouchier-Hayes, Lisa (2018) Lighting Up the Pathways to Caspase Activation Using Bimolecular Fluorescence Complementation. J Vis Exp :
Cardona, Sandra M; Kim, Sangwon V; Church, Kaira A et al. (2018) Role of the Fractalkine Receptor in CNS Autoimmune Inflammation: New Approach Utilizing a Mouse Model Expressing the Human CX3CR1I249/M280 Variant. Front Cell Neurosci 12:365
Zhang, Manqi; Suarez, Egla; Vasquez, Judy L et al. (2018) Inositol polyphosphate 4-phosphatase type II regulation of androgen receptor activity. Oncogene :
Chiang, Yun-Chen; Park, In-Young; Terzo, Esteban A et al. (2018) SETD2 Haploinsufficiency for Microtubule Methylation Is an Early Driver of Genomic Instability in Renal Cell Carcinoma. Cancer Res 78:3135-3146
Shao, Longjiang; Wang, Jianghua; Karatas, Omer Faruk et al. (2018) Fibroblast growth factor receptor signaling plays a key role in transformation induced by the TMPRSS2/ERG fusion gene and decreased PTEN. Oncotarget 9:14456-14471

Showing the most recent 10 out of 991 publications