CORE: Metabolomics Shared Resource (Omics Group) PROJECT SUMMARY Development and progression of cancer has long been known to be multifactorial. To begin to understand cancer progression with a systems perspective, we need to characterize and integrate the various molecular components involved across the various biospecimens analyzed, defining the new era of Systems Biology, or OMICS. The emergence of the ?-omics? era has shifted the focus from the assessment of individual genes and proteins to examination of a substantial component of the expressed genome and proteome. Deciphering the molecular networks that distinguish subsets of tumors that progress to advanced disease will delineate the etiology of cancer, as well as lead to the identification of biomarkers that will aid in the identification of patients that should be treated. Although such studies have been carried out using global transcriptomics, and to some extent proteomics platforms, much less has been achieved in the domain of studying global metabolic alterations. The current application aims to create a cancer-centric metabolomics shared resource to provide service, infrastructure, expertise, support and training on measurement of metabolite levels in a broad range of specimens using various orthogonal technology platforms that together can measure a significant breadth of the metabolome. Specifically, this shared resource will measure qualitative and quantitative levels of polar, mid polar and non-polar metabolites including lipids as well as measure pathway activity in cell lines, tissues, plasma, serum and urine.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA125123-12
Application #
9525806
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
12
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Lyon, Deborah; Lapteva, Natasha; Gee, Adrian P (2018) Absence of Replication-Competent Retrovirus in Vectors, T Cell Products, and Patient Follow-Up Samples. Mol Ther 26:6-7
Yosef, Nejla; Vadakkan, Tegy J; Park, June-Hee et al. (2018) The phenotypic and functional properties of mouse yolk-sac-derived embryonic macrophages. Dev Biol 442:138-154
El-Shennawy, Lamiaa; Dubrovskyi, Oleksii; Kastrati, Irida et al. (2018) Coactivation of Estrogen Receptor and IKK? Induces a Dormant Metastatic Phenotype in ER-Positive Breast Cancer. Cancer Res 78:974-984
Bhat, Raksha R; Yadav, Puja; Sahay, Debashish et al. (2018) GPCRs profiling and identification of GPR110 as a potential new target in HER2+ breast cancer. Breast Cancer Res Treat 170:279-292
Kotlajich, Matthew V; Xia, Jun; Zhai, Yin et al. (2018) Fluorescent fusions of the N protein of phage Mu label DNA damage in living cells. DNA Repair (Amst) 72:86-92
Zhang, Yiqun; Yang, Lixing; Kucherlapati, Melanie et al. (2018) A Pan-Cancer Compendium of Genes Deregulated by Somatic Genomic Rearrangement across More Than 1,400 Cases. Cell Rep 24:515-527
McLaughlin, Lauren P; Rouce, Rayne; Gottschalk, Stephen et al. (2018) EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood 132:2351-2361
Agosto, Melina A; Anastassov, Ivan A; Wensel, Theodore G (2018) Differential epitope masking reveals synapse-specific complexes of TRPM1. Vis Neurosci 35:E001
Byrd, Tiara T; Fousek, Kristen; Pignata, Antonella et al. (2018) TEM8/ANTXR1-Specific CAR T Cells as a Targeted Therapy for Triple-Negative Breast Cancer. Cancer Res 78:489-500
Xing, Zhen; Zhang, Yanyan; Liang, Ke et al. (2018) Expression of Long Noncoding RNA YIYA Promotes Glycolysis in Breast Cancer. Cancer Res 78:4524-4532

Showing the most recent 10 out of 991 publications