Evolution of tumors, and evolution generally, occurs by variation and selection. Variation creates the ability to evolve (evolvability). Whereas conventional therapies kill cells or stop them from growing (are anti- proliferative), proposed novel interventions that would inhibit the ability to evolve promise new and fundamentally different ways to inhibit oncogenesis and thwart resistance. The Cancer Evolvability Program (CE) aims to understand the fundamental underlying molecular mechanisms that generate variation and so drive tumor evolution; to develop new molecular approaches and tools to advance cancer diagnosis and therapy; and to develop with other CCSG programs the conceptual and technical frameworks for translational cancer research. The CE Program encompasses two themes, which focus on the two basic routes that generate variation: (1) Intrinsic: Genome and Phenotypic Plasticity (mutation, genome rearrangement, recombination, epigenetic and stochastic protein and RNA variation); and (2) Extrinsic: Infectious Oncogenesis and Microbiome, in which introduction of foreign genes, proteins, RNAs, and other molecules and genetic programs by infectious agents (viruses, microbes, microbiome) promote (or prevent) oncogenesis. The CCSG supports this research program by providing key shared resources, particularly Cytometry and Cell Sorting, Integrated Microscopy, Genomic and RNA Profiling, and Proteomics; as well as administrative support for meetings, clubs and interest groups, and pilot funding and recruitment funds. The CE Program currently has 31 members from ten departments in two institutions. Thirty members have primary appointments at Baylor College of Medicine, one member has a primary appointment at the University of Texas and therefore is an adjunct member. The Cancer Evolvability Program currently has $9.6M in peer-reviewed funding (direct costs per annum), $2.6M from NCI and $1.5M in other peer reviewed funding mostly from the Cancer Prevention and Research Initiative of Texas (CPRIT). Most of this is in the form of R01 grants. Members of the Cancer Evolvability Program published a total of 452 cancer-related papers in the previous funding period: 28% were inter-programmatic, 13% were intra-programmatic, and 50% were ?inter-institutional? (collaborations outside the Dan L Duncan Cancer Center).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA125123-12
Application #
9525818
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
12
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Liu, Yanhong; O'Brien, Jacqueline L; Ajami, Nadim J et al. (2018) Lung tissue microbial profile in lung cancer is distinct from emphysema. Am J Cancer Res 8:1775-1787
Scavuzzo, Marissa A; Hill, Matthew C; Chmielowiec, Jolanta et al. (2018) Endocrine lineage biases arise in temporally distinct endocrine progenitors during pancreatic morphogenesis. Nat Commun 9:3356
Zhang, Yan; Zheng, Dayong; Zhou, Ting et al. (2018) Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nat Commun 9:4080
Grzeskowiak, Caitlin L; Kundu, Samrat T; Mo, Xiulei et al. (2018) In vivo screening identifies GATAD2B as a metastasis driver in KRAS-driven lung cancer. Nat Commun 9:2732
Wang, Xian; Tan, Ying; Cao, Xixi et al. (2018) Epigenetic activation of HORMAD1 in basal-like breast cancer: role in Rucaparib sensitivity. Oncotarget 9:30115-30127
Newton, Jared M; Hanoteau, Aurelie; Sikora, Andrew G (2018) Enrichment and Characterization of the Tumor Immune and Non-immune Microenvironments in Established Subcutaneous Murine Tumors. J Vis Exp :
Brunetti, Lorenzo; Gundry, Michael C; Sorcini, Daniele et al. (2018) Mutant NPM1 Maintains the Leukemic State through HOX Expression. Cancer Cell 34:499-512.e9
Zaheer, Mahira; Wang, Changjun; Bian, Fang et al. (2018) Protective role of commensal bacteria in Sjögren Syndrome. J Autoimmun 93:45-56
Samaha, Heba; Pignata, Antonella; Fousek, Kristen et al. (2018) A homing system targets therapeutic T cells to brain cancer. Nature 561:331-337
Disney-Hogg, Linden; Sud, Amit; Law, Philip J et al. (2018) Influence of obesity-related risk factors in the aetiology of glioma. Br J Cancer 118:1020-1027

Showing the most recent 10 out of 991 publications