The Bioinformatics Core will work closely with the major users by providing a customized laboratory sample tracking system, an efficient and quick data pipeline, a tailored project management system, and a web portal to facilitate sharing of experimental results. The Core will convert the data acquired from a range of mass spectrometric platforms into qualitative and quantitative information to address the questions posed by our users. Besides facilitating the analysis of the data for the users using a range of commercial software, several new bioinformatics tools will be created to benefit both local users and the broader neuroscience communities. We will continue the development of NeuroPred, a currently available web-based tool that predicts prohormone cleavages and the resulting signaling peptides. This predictor provides a valuable link between genetic information coding for the protein prohormones and the peptide products one observes. NeuroProSightPTM is another important bioinformatics tool that identifies post-translational modifications in intact proteins from """"""""top-down"""""""" data analysis of absolute masses. The top-down approach will enable investigators to use absolute masses of intact proteins to identify neuropeptides, cytokines, hormones, and other neuron-specific proteins and peptides. Lastly, a unique method of shot-gun peptidomics that combines bioinformatics tools and high accuracy mass measurements will enhance peptide characterization and identification, and will be used across a range of important neuroscience models. Together, the well-planned experiments, existing tools, and new bioinformatics capabilities will create novel approaches and new data on the intercellular signaling molecules found in the brain.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Center Core Grants (P30)
Project #
2P30DA018310-06
Application #
7620689
Study Section
Special Emphasis Panel (ZDA1-RXL-E (02))
Project Start
2009-06-01
Project End
2014-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
6
Fiscal Year
2009
Total Cost
$305,316
Indirect Cost
Name
University of Illinois Urbana-Champaign
Department
Type
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Neumann, Elizabeth K; Comi, Troy J; Spegazzini, Nicolas et al. (2018) Multimodal Chemical Analysis of the Brain by High Mass Resolution Mass Spectrometry and Infrared Spectroscopic Imaging. Anal Chem 90:11572-11580
Yang, Ning; Anapindi, Krishna D B; Rubakhin, Stanislav S et al. (2018) Neuropeptidomics of the Rat Habenular Nuclei. J Proteome Res 17:1463-1473
Tillmaand, Emily G; Sweedler, Jonathan V (2018) Integrating Mass Spectrometry with Microphysiological Systems for Improved Neurochemical Studies. Microphysiol Syst 2:
Greenwood, Michael P; Greenwood, Mingkwan; Romanova, Elena V et al. (2018) The effects of aging on biosynthetic processes in the rat hypothalamic osmoregulatory neuroendocrine system. Neurobiol Aging 65:178-191
Shen, Mei; Qu, Zizheng; DesLaurier, Justin et al. (2018) Single Synaptic Observation of Cholinergic Neurotransmission on Living Neurons: Concentration and Dynamics. J Am Chem Soc 140:7764-7768
Sorokina, Anastasia M; Saul, Michael; Goncalves, Tassia M et al. (2018) Striatal transcriptome of a mouse model of ADHD reveals a pattern of synaptic remodeling. PLoS One 13:e0201553
Anapindi, Krishna D B; Romanova, Elena V; Southey, Bruce R et al. (2018) Peptide identifications and false discovery rates using different mass spectrometry platforms. Talanta 182:456-463
Southey, Bruce R; Romanova, Elena V; Rodriguez-Zas, Sandra L et al. (2018) Bioinformatics for Prohormone and Neuropeptide Discovery. Methods Mol Biol 1719:71-96
Neumann, Elizabeth K; Do, Thanh D; Comi, Troy J et al. (2018) Exploring the Fundamental Structures of Life: Non-targeted, Chemical Analysis of Single Cells and Subcellular Structures. Angew Chem Int Ed Engl :
Welle, Theresa M; Alanis, Kristen; Colombo, Michelle L et al. (2018) A high spatiotemporal study of somatic exocytosis with scanning electrochemical microscopy and nanoITIES electrodes. Chem Sci 9:4937-4941

Showing the most recent 10 out of 227 publications