The overall goals of the Center are to: (1) Provide better access to standard laboratory analyses and facilities; (2) assist in recruitment of study patients with diabetes and suitable controls, and provide complex animal models such as primates for diabetes-related investigation; (3) foster the development and efficient use of new technologies relevant to diabetes research; (4) coordinate, stimulate and support collaborative studies between investigators interested in diabetes at the U of Washington; and (5) enhance the environment for research training of post doctoral fellows and predoctoral medical and basic science students interested in Diabetes and related metabolic and endocrine disorders. To accomplish these goals the Diabetes Endocrinology Research Center is organized around six core units: Administrative Core, Clinical Research Core, Cytohistochemistry Core, Immunoassay Core, Physiology Core and Tissue Culture Core. Through specific services provided,, these cores support the research of over 40 Affiliate investigators and 36 Associate investigators. This research covers the entire spectrum of diabetes investigation including (a) molecular, cellular and physiological regulation of metabolic hormones and the mechanism of hormone action, (b) etiology and pathogenesis of IDDM and NIDDM, (c) mechanism of hyperlipidemia and the role of lipoproteins in atherosclerosis, (d) etiology, pathogenesis, treatment and prevention of diabetic complications and (e) etiology and pathogenesis of obesity. In addition, the Center's Pilot and Feasibility and Molecular Studies Development Programs provide initial support for new investigators in the field of diabetes, new diabetes research by established investigators in other disciplines and encourages the application of molecular biology to problems in the field of diabetes. To enhance the scientific environment for diabetes research at the University of Washington, the Center's Enrichment Program provides a Seminar Series, Core Symposia, and Visiting Scientist Program.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
3P30DK017047-26S1
Application #
6664282
Study Section
Special Emphasis Panel (ZDK1 (O1))
Program Officer
Abraham, Kristin M
Project Start
1977-06-01
Project End
2002-11-30
Budget Start
2001-12-01
Budget End
2002-11-30
Support Year
26
Fiscal Year
2002
Total Cost
$227,800
Indirect Cost
Name
University of Washington
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
RISE Consortium (2018) Impact of Insulin and Metformin Versus Metformin Alone on ?-Cell Function in Youth With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes. Diabetes Care 41:1717-1725
Osoti, Alfred; Temu, Tecla M; Kirui, Nicholas et al. (2018) Metabolic Syndrome Among Antiretroviral Therapy-Naive Versus Experienced HIV-Infected Patients Without Preexisting Cardiometabolic Disorders in Western Kenya. AIDS Patient Care STDS 32:215-222
Sharma, Ashok; Liu, Xiang; Hadley, David et al. (2018) Identification of non-HLA genes associated with development of islet autoimmunity and type 1 diabetes in the prospective TEDDY cohort. J Autoimmun 89:90-100
Kramer, Philip A; Duan, Jicheng; Gaffrey, Matthew J et al. (2018) Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle. Redox Biol 17:367-376
Sharp, Seth A; Weedon, Michael N; Hagopian, William A et al. (2018) Clinical and research uses of genetic risk scores in type 1 diabetes. Curr Opin Genet Dev 50:96-102
Han, Seung Jin; Boyko, Edward J (2018) The Evidence for an Obesity Paradox in Type 2 Diabetes Mellitus. Diabetes Metab J 42:179-187
Heffron, Sean P; Lin, Bing-Xue; Parikh, Manish et al. (2018) Changes in High-Density Lipoprotein Cholesterol Efflux Capacity After Bariatric Surgery Are Procedure Dependent. Arterioscler Thromb Vasc Biol 38:245-254
Vaisar, Tomáš; Couzens, Erica; Hwang, Arnold et al. (2018) Type 2 diabetes is associated with loss of HDL endothelium protective functions. PLoS One 13:e0192616
Kang, Inkyung; Chang, Mary Y; Wight, Thomas N et al. (2018) Proteoglycans as Immunomodulators of the Innate Immune Response to Lung Infection. J Histochem Cytochem 66:241-259
Rubinow, Katya B; Houston, Barbara; Wang, Shari et al. (2018) Androgen receptor deficiency in monocytes/macrophages does not alter adiposity or glucose homeostasis in male mice. Asian J Androl 20:276-283

Showing the most recent 10 out of 1296 publications