The Quantitative and Functional Proteomics Core of the University of Washington Diabetes Research Center provides affiliate investigators the powerful tools of modern mass spectrometry and complex data set analysis. The goals of the Core are to: (1) Perform MS analyses for DRC affiliate investigators, such as quantifying target analytes and obtaining spectra for structural identification of proteins; (2) Develop new MS methods for structural identification or quantification of proteins involved in the pathogenesis of diabetes and its complications, risk factors, or treatment.; (3) Assist DRC affiliates with experimental design of their studies to ensure successful proteomics analysis and provide training in principles and use of MS; (4) Provide a central facility for data storage, dissemination, and sharing; (5) Provide bioinformatics support for analyzing and interpreting proteomic data sets and for integrating them with Gene Ontology, protein-protein interaction databases, and pathway analysis; and (6) Provide bioinformatics support for integration of proteomic studies with functional assays, with the long-term aim of providing an integrated, systems biology view of diabetes and diabetes-related disease processes. By providing a centralized facility, the Core meets these goals with optimal efficiency and cost-effectiveness, providing expertise necessary to perform state-of-the-art proteomics and mass spectrometric studies at the cutting edge of current technology. Further, by centralizing and standardizing procedures, the Quantitative and Functional Proteomics Core provides its affiliate investigators a common set of analytical tools for obtaining a unified understanding of molecular mechanisms involved in pathophysiologic processes of diabetes and its associated complications.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK017047-43
Application #
9645069
Study Section
Special Emphasis Panel (ZDK1)
Project Start
2018-12-01
Project End
2022-11-30
Budget Start
2018-12-01
Budget End
2019-11-30
Support Year
43
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
RISE Consortium (2018) Impact of Insulin and Metformin Versus Metformin Alone on ?-Cell Function in Youth With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes. Diabetes Care 41:1717-1725
Osoti, Alfred; Temu, Tecla M; Kirui, Nicholas et al. (2018) Metabolic Syndrome Among Antiretroviral Therapy-Naive Versus Experienced HIV-Infected Patients Without Preexisting Cardiometabolic Disorders in Western Kenya. AIDS Patient Care STDS 32:215-222
Sharma, Ashok; Liu, Xiang; Hadley, David et al. (2018) Identification of non-HLA genes associated with development of islet autoimmunity and type 1 diabetes in the prospective TEDDY cohort. J Autoimmun 89:90-100
Kramer, Philip A; Duan, Jicheng; Gaffrey, Matthew J et al. (2018) Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle. Redox Biol 17:367-376
Sharp, Seth A; Weedon, Michael N; Hagopian, William A et al. (2018) Clinical and research uses of genetic risk scores in type 1 diabetes. Curr Opin Genet Dev 50:96-102
Han, Seung Jin; Boyko, Edward J (2018) The Evidence for an Obesity Paradox in Type 2 Diabetes Mellitus. Diabetes Metab J 42:179-187
Heffron, Sean P; Lin, Bing-Xue; Parikh, Manish et al. (2018) Changes in High-Density Lipoprotein Cholesterol Efflux Capacity After Bariatric Surgery Are Procedure Dependent. Arterioscler Thromb Vasc Biol 38:245-254
Vaisar, Tomáš; Couzens, Erica; Hwang, Arnold et al. (2018) Type 2 diabetes is associated with loss of HDL endothelium protective functions. PLoS One 13:e0192616
Kang, Inkyung; Chang, Mary Y; Wight, Thomas N et al. (2018) Proteoglycans as Immunomodulators of the Innate Immune Response to Lung Infection. J Histochem Cytochem 66:241-259
Rubinow, Katya B; Houston, Barbara; Wang, Shari et al. (2018) Androgen receptor deficiency in monocytes/macrophages does not alter adiposity or glucose homeostasis in male mice. Asian J Androl 20:276-283

Showing the most recent 10 out of 1296 publications