The overall objective of the Cell Function Analysis Core at the University of Washington Diabetes Research Center is to provide affiliates with analyses of glucose metabolism, mitochondrial function and intracellular signaling to support research of diabetes, obesity and related disorders. To achieve this goal, the Core aims to: (1) Provide real time functional analysis using in vitro flow culture systems of tissues/cells; (2) Provide in vivo assessments of metabolic phenotypes in rodent models important in diabetes research; (3) Provide static assessment of cellular metabolism and function; (4) Harvest, isolate and culture primary tissue from rodents, including islets and islet cells, liver, retina and brain, for subsequent morphological and functional characterization, as well as to procure human islets for the same purposes; (5) Offer training and consultation to affiliates, their trainees and staff; and (6) Develop new analytical tools requested by affiliates to support their studies of the metabolic regulation of cell function as it relates to research in diabetes, obesity and related disorders. Since inception of the Core in 2002, in vitro analysis has been the major focus. Cell and tissue types that have been analyzed include islets, retina, skeletal muscle, stem cells, macrophages, lymphocytes, adipocytes, endothelial cells, neuronal cells and liver/hepatocytes. Recently, in vivo services have been added to combine both the detailed and mechanistic analyses provided in cell and tissue studies with the ability to test the roles of identified processes in whole body settings. Whole animal studies currently offered include glucose and insulin tolerance tests, hyperinsulinemic-euglycemic clamps, islet transplantation and collection of lymph. Expansion of new in vitro, ex vivo, and in vivo services has allowed the Core to better serve the needs of the Center's research base. As diabetes affects metabolism and signaling in many cell types, the services of the Cell Function Analysis Core continue to be of great value to many Center affiliate investigators. The Core plans to continue to provide users with systematic and integrated approaches to the analysis of cell types that are critically involved in diabetes and its complications, obesity and related disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK017047-45
Application #
10077863
Study Section
Special Emphasis Panel (ZDK1)
Project Start
2018-02-10
Project End
2022-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
45
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Sharma, Ashok; Liu, Xiang; Hadley, David et al. (2018) Identification of non-HLA genes associated with development of islet autoimmunity and type 1 diabetes in the prospective TEDDY cohort. J Autoimmun 89:90-100
Kramer, Philip A; Duan, Jicheng; Gaffrey, Matthew J et al. (2018) Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle. Redox Biol 17:367-376
RISE Consortium (2018) Impact of Insulin and Metformin Versus Metformin Alone on ?-Cell Function in Youth With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes. Diabetes Care 41:1717-1725
Osoti, Alfred; Temu, Tecla M; Kirui, Nicholas et al. (2018) Metabolic Syndrome Among Antiretroviral Therapy-Naive Versus Experienced HIV-Infected Patients Without Preexisting Cardiometabolic Disorders in Western Kenya. AIDS Patient Care STDS 32:215-222
Heffron, Sean P; Lin, Bing-Xue; Parikh, Manish et al. (2018) Changes in High-Density Lipoprotein Cholesterol Efflux Capacity After Bariatric Surgery Are Procedure Dependent. Arterioscler Thromb Vasc Biol 38:245-254
Vaisar, Tomáš; Couzens, Erica; Hwang, Arnold et al. (2018) Type 2 diabetes is associated with loss of HDL endothelium protective functions. PLoS One 13:e0192616
Sharp, Seth A; Weedon, Michael N; Hagopian, William A et al. (2018) Clinical and research uses of genetic risk scores in type 1 diabetes. Curr Opin Genet Dev 50:96-102
Han, Seung Jin; Boyko, Edward J (2018) The Evidence for an Obesity Paradox in Type 2 Diabetes Mellitus. Diabetes Metab J 42:179-187
Sosenko, Jay M; Geyer, Susan; Skyler, Jay S et al. (2018) The influence of body mass index and age on C-peptide at the diagnosis of type 1 diabetes in children who participated in the diabetes prevention trial-type 1. Pediatr Diabetes 19:403-409
Smith, Laura B; Liu, Xiang; Johnson, Suzanne Bennett et al. (2018) Family adjustment to diabetes diagnosis in children: Can participation in a study on type 1 diabetes genetic risk be helpful? Pediatr Diabetes 19:1025-1033

Showing the most recent 10 out of 1296 publications